cs20_8-1
Posted ls1314
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了cs20_8-1相关的知识,希望对你有一定的参考价值。
1. VAE
- lecture link: https://docs.google.com/presentation/d/1VSNlkGcR-b39tMcuREjzZdhYOPvoZudpcbuNlf5hOIM/edit#slide=id.g334db163d4_0_41
- todo, 我打印了个pdf, tutorial to VAE
2. tensorflow distribution(并不是分布式!而是概率分布)
- PPL(probabilities program language)
- tensorflow distribution
- https://zhuanlan.zhihu.com/p/36032114
- https://zhuanlan.zhihu.com/p/35782672
- The TensorFlow Distributions library has moved to TensorFlow Probability
3. VAE in Tensorflow
如下面测试代码
import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" # import tensorflow as tf import numpy as np import scipy.misc def make_prior(code_size=2): mean, stddev = tf.zeros([code_size]), tf.ones([code_size]) return tfd.MultivariateNormalDiag(mean, stddev) def make_encoder(images, code_size=2): images = tf.layers.flatten(images) hidden = tf.layers.dense(images, 100, tf.nn.relu) mean = tf.layers.dense(hidden, code_size) stddev = tf.layers.dense(hidden, code_size, tf.nn.softplus) return tfd.MultivariateNormalDiag(mean, stddev) def make_decoder(code, data_shape=[28, 28]): hidden = tf.layers.dense(code, 100, tf.nn.relu) logit = tf.layers.dense(hidden, np.prod(data_shape)) logit = tf.reshape(logit, [-1] + data_shape) return tfd.Independent(tfd.Bernoulli(logit), len(data_shape)) tfd = tf.contrib.distributions images = tf.placeholder(tf.float32, [None, 28, 28]) prior = make_prior() posterior = make_encoder(images) dist = make_decoder(posterior.sample()) elbo = dist.log_prob(images) - tfd.kl_divergence(posterior, prior) optimize = tf.train.AdamOptimizer().minimize(-elbo) samples = make_decoder(prior.sample(10)).mean() # For visualization print("samples-shape: ", tf.shape(samples)) print("samples: : ", samples) # 转换shape 为 28x28xC //现在是 10x28x28,我要换成 28x28x10,利用 tf.transpose samples = tf.transpose(samples, [1,2,0]) samples = samples[:][:][0] # 同理,使用 for 可以找出其他剩余9张图片 print("samples-1: : ", samples) with tf.Session() as sess: sess.run(tf.initialize_all_variables()) sess.run(tf.global_variables_initializer()) img_numpy = samples.eval(session=sess) # tensor to numpy_arr print(type(img_numpy)) scipy.misc.imsave('VAE_TF.png', img_numpy) # numpy_arr to image # The tfd.Independent(dist, 2) tells TensorFlow to treat the two innermost dimensions as # data dimensions rather than batch dimensions # This means dist.log_prob(images) returns # a number per images rather than per pixel # As the name tfd.Independent() says, # it's just summing the pixel log probabilities
4. BNN in Tensorflow
如下示例代码:
import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" # import tensorflow as tf import numpy as np # Byase NN def define_network(images, num_classes=10): mean = tf.get_variable('mean', [28 * 28, num_classes]) stddev = tf.get_variable('stddev', [28 * 28, num_classes]) prior = tfd.MultivariateNormalDiag( tf.zeros_like(mean), tf.ones_like(stddev)) posterior = tfd.MultivariateNormalDiag(mean, tf.nn.softplus(stddev)) bias = tf.get_variable('bias', [num_classes]) # Or Bayesian, too logit = tf.nn.relu(tf.matmul(posterior.sample(), images) + bias) return tfd.Categorical(logit), posterior, prior tfd = tf.contrib.distributions images = None # to do label = None # to do dist, posterior, prior = define_network(images) elbo = (tf.reduce_mean(dist.log_prob(label)) - tf.reduce_mean(tfd.kl_divergence(posterior, prior)))
以上是关于cs20_8-1的主要内容,如果未能解决你的问题,请参考以下文章
Unity报错:Read only asset Packages/com.xxxxx.xxx.xxxx/Editor/VSCodeDiscovery.cs.IPGSD has no meta(代码片段
Unity报错:Read only asset Packages/com.xxxxx.xxx.xxxx/Editor/VSCodeDiscovery.cs.IPGSD has no meta(代码片段