爬虫-自如房价问题

Posted czaorz

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了爬虫-自如房价问题相关的知识,希望对你有一定的参考价值。

最近爬了下自如网在深圳地域的租房信息,发现房价是一个很大的问题。

正好也刚看了机器学习实战这本书,感觉可以试一下写个图像识别来针对下这个问题=0=

(其实当时试了好多网上的方法,不知道为啥一张很明显的数字图片,就是读不出来,所以就自己模仿着写了个)

 

自如图片down下来后类似这种,由0-9十个数字,300*30大小的png格式组成的图片

 技术图片

 

下面的有两个数据库文件扔不上来,所以直接跑应该必报错。直接扔到github上了。

github:https://github.com/CzaOrz/smallStorage/tree/master/scrapy_shenzhen/ziru

两个文件:cza_keys.txtcza_values.txt

import os
from PIL import Image
import numpy as np
import operator

"""img2gsi"""
def img2gsi(img,threshold):
    """传入image对象进行灰度、二值处理"""
    img = img.convert("L") # 转灰度
    pixdata = img.load()
    w, h = img.size
    for x in range(w):
        for y in range(h):
            if pixdata[x, y] > threshold:
                pixdata[x, y] = 1
            else:
                pixdata[x, y] = 0
    return img

"""自如图片由包含0-9的300*30大小的png格式图片组成,切割下"""
def splitImage(img, rownum, colnum):
    list = []
    w, h = img.size
    if rownum <= h and colnum <= w:
        print(‘Original image info: %sx%s, %s, %s‘ % (w, h, img.format, img.mode))
        print(‘开始处理图片切割, 请稍候...‘)

        num = 0
        rowheight = h // rownum
        colwidth = w // colnum
        for r in range(rownum):
            for c in range(colnum):
                box = (c * colwidth, r * rowheight, (c + 1) * colwidth, (r + 1) * rowheight)
                list.append(np.array(img.crop(box), ‘f‘))#.save(os.path.join(basename + ‘_‘ + str(num) + ‘.‘ + ext), ext)
                num = num + 1

        print(‘图片切割完毕,共生成 %s 张小图片。‘ % num)
        return list #切割之后,返回每一个图片的数组阵吗
    else:
        print(‘不合法的行列切割参数!‘)

"""机器学习实战上写的函数,直接手动copy""" def classify0(inX, dataSet, labels, k): # inX is values you want to match, dataSet is learning database dataSetSize = dataSet.shape[0] diffMat = np.tile(inX, (dataSetSize,1)) - dataSet sqDiffMat = diffMat**2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances**0.5 # ((x-x)**2 + (x-x)**2)**0.5, remember it is still a array sortedDistIndicies = distances.argsort() # rerurn the array‘s index by reverse = False classCount = {} # define a dictionary for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True) return sortedClassCount[0][0]#,sortedClassCount[0][1],sortedClassCount[1][0],sortedClassCount[1][1]
def img2vector(data): returnVect = np.zeros((1,900)) #fr = open(filename) #print(fr) count = 0 for row in data:#range(30): for gsi in row:#range(30): returnVect[0, count] = gsi#float(lineStr[j]) count += 1 return returnVect
def handwritingClassTest(testData): list = [] #there may exist bug when run it trainingMat = np.loadtxt(os.path.join(os.getcwd(), ‘cza_values.txt‘)) #读取训练数据库,数据库我没贴上来=0= with open(os.path.join(os.getcwd(), ‘cza_keys.txt‘),‘r‘) as f_r: #读取训练数据库,数据库我没贴上来=0= data = f_r.readline() hwLabels = [int(i) for i in data] print(‘read db done‘) for data in testData:#range(mTest): vectorUnderTest = img2vector(data)#os.getcwd()+‘\\test\\%s‘%fileNameStr) classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3) list.append(classifierResult) print(‘trainingMat_resylt_is ‘, classifierResult)#,‘real result is ‘,classNumStr) return list def img2num(picture): # input a picture name is ok img = Image.open(picture) img = img2gsi(img,140) testData = splitImage(img, 1, 10) print(‘start handel‘) result = handwritingClassTest(testData) return result # this is a list including picture2num if __name__ == ‘__main__‘: img2num(‘123.png‘) img2num(‘456.png‘)

  

最后结果类似这种,只是针对自如的这种图片可以达到成功率100%,其他的就不谈了,bug无解

菜鸟一个,刚学不久,不会的还是太多了QAQ

技术图片

 




以上是关于爬虫-自如房价问题的主要内容,如果未能解决你的问题,请参考以下文章

Python爬虫项目--爬取自如网房源信息

Python开发网络爬虫抓取某同城房价信息

基于大数据的房价数据爬虫与可视化分析预测系统

Python爬虫第一课

scrapy按顺序启动多个爬虫代码片段(python3)

Python爬虫实战,openpyxl模块学习,爬取房价信息并简单的数据分析