hdu4497-GCD and LCM-(欧拉筛+唯一分解定理+组合数)

Posted shoulinniao

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hdu4497-GCD and LCM-(欧拉筛+唯一分解定理+组合数)相关的知识,希望对你有一定的参考价值。

GCD and LCM

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 3409    Accepted Submission(s): 1503


Problem Description
Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and lcm(x, y, z) = L?
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z.
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.
 

 

Input
First line comes an integer T (T <= 12), telling the number of test cases.
The next T lines, each contains two positive 32-bit signed integers, G and L.
It’s guaranteed that each answer will fit in a 32-bit signed integer.
 

 

Output
For each test case, print one line with the number of solutions satisfying the conditions above.
 

 

Sample Input
2 6 72 7 33
 

 

Sample Output
72 0
 
翻译:给出g和l,求满足gcd(x,y,z)=g,lcm(x,y,z)=l的(x,y,z)组合的数量,(1, 2, 3)和(1, 3, 2)算作不同组合
分析:
g是因数,l是倍数,显然可以得到x%g=y%g=z%g=0=l%x=l%y=l%z;
进一步推出l%g=0;若不符合,无解。
 
根据唯一分解定理
将x,y,z分解
x=p1^a1*p2^a2……ps^as; 
y=p1^b1*p2^b2……ps^bs; 
z=p1^c2*p2^c2……ps^cs; 
g是三个数的最大公约数,则g满足g=p1^min(a1,b1,c1)……ps^min(as,bs,cs)=p1^e1……ps^es 
l是三个数的最小公倍数,则l满足l=p1^max(a1,b1,c1)……ps^max(as,bs,cs)=p1^h1……ps^hs
ei=min(ai,bi,ci) hi=max(ai,bi,bi)
x,y,z三个数分解后,对于每一个质因子,必然有一个指数是ei,一个指数是hi,先将这两个数固定下来
另一个数可以取ei到hi之间的数,包括ei和hi,设为ti
(1)当ti=ei或者ti=hi时,(ei,ei,hi)只有三种组合方式,(ei,hi,hi)也只有三种组合方式
(2)当ti≠ei并且ti≠hi时,(ei,ti,hi)有6种组合方式
(3)当ei=ti=hi时,只有1种组合方式
当ei≠hi时,则每个质因子全部的组合方式有6*(hi-ei)种,组合数用乘法计算结果,当hi=ei,不累乘0
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
#include<string>
#include<vector>
#include<iostream>
#include<cstring>
#define inf 0x3f3f3f3f
using namespace std;
#define ll long long
const int maxx=1e6+5;
int prime[maxx];
int vis[maxx];
ll g,l;
int cnt;
void init()
{
    memset(vis,true,sizeof(vis));
    vis[0]=vis[1]=false;
    cnt=0;
    for(int i=2;i<=maxx;i++)
    {
        if(vis[i])
            prime[cnt++]=i;
        for(int j=0;j<cnt && prime[j]*i<=maxx;i++)
        {
            vis[ i*prime[j] ]=false;
            if(i%prime[j]==0) break;
        }
    }
}

int main()///hdu4497
{
    init();
    int t;
    scanf("%d",&t);
    while(t--)
    {
        ll ans=1;
        scanf("%lld%lld",&g,&l);
        if(l%g)
            printf("0
");
        else
        {
            for(int i=0;i<cnt;i++)
            {
                int e=0,h=0;
                while(g%prime[i]==0)
                {
                    e++;
                    g=g/prime[i];
                }
                while(l%prime[i]==0)
                {
                    h++;
                    l=l/prime[i];
                }
                if(h-e)
                {
                    ans=ans*(h-e)*6;
                }
            }
            if(g==l)///32位范围内大素数因子只能有一个,l能被g整除证明这个大素数相同,不累乘
                ;
            else if(l>1)///如果g=1,l=大素数,再乘一次6
                ans=ans*6;
            printf("%lld
",ans);
        }
    }
    return 0;
}

 

 










以上是关于hdu4497-GCD and LCM-(欧拉筛+唯一分解定理+组合数)的主要内容,如果未能解决你的问题,请参考以下文章

HDU 4497 GCD and LCM (分解质因数)

POJ 2478 欧拉函数(欧拉筛法) HDU 1576 逆元求法

HDU 3823 Prime Friend(线性欧拉筛+打表)

HDU6069 Counting Divisors欧拉筛法

hdu3826-Squarefree number-(欧拉筛+唯一分解定理)

hdu6390 /// 欧拉函数+莫比乌斯反演 筛inv[] phi[] mu[]