均分纸牌(Noip2002)
Posted darkvalkyrie
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了均分纸牌(Noip2002)相关的知识,希望对你有一定的参考价值。
1320:【例6.2】均分纸牌(Noip2002)
时间限制: 1000 ms 内存限制: 65536 KB
提交数: 3537 通过数: 1839
【题目描述】
有n堆纸牌,编号分别为 1,2,…, n。每堆上有若干张,但纸牌总数必为n的倍数。可以在任一堆上取若干张纸牌,然后移动。
移牌规则为:在编号为1的堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 n 的堆上取的纸牌,只能移到编号为n-1的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如 n=4,4堆纸牌数分别为: ① 9 ② 8 ③ 17 ④ 6
移动3次可达到目的:
从 ③ 取4张牌放到④(9 8 13 10)->从③取3张牌放到 ②(9 11 10 10)-> 从②取1张牌放到①(10 10 10 10)。
【输入】
n(n 堆纸牌,1 ≤ n ≤ 100)
a1 a2 … an (n 堆纸牌,每堆纸牌初始数,l≤ ai ≤10000)。
【输出】
所有堆均达到相等时的最少移动次数。
【输入样例】
4 9 8 17 6
【输出样例】
3
例题不怎么详的解:
前辈们告诉我们,OI的很多题目想要解出来是需要很多奇巧淫技的,多积累点奇怪的思路和技巧,不仅对提升成绩有帮助,还对自己大脑开发有好处(一本正经)。
实际上很多OI题都要靠奇葩的技巧,就像其他学科竞赛那样。。。
这一题也是如此。
很多人一上来看到这题目就直接懵逼了,没有头绪,难不成让我用搜索做?
于是乎玄乎的来了,我们代入一点逆向的思想,分析输入数据和输出数据的关系,震惊地发现原来所有牌堆中牌的总数平分到每一个堆中(即平均值)就是最后均分的结果,也照应了题目。
好吧我承认这很容易想出来,因为题目给出的暗示很明显:
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
好的,我实力眼瞎没看到,刚看到这道题我差点就去搜索了。。。所以说啊,认真看题无论在哪里都是第一要素!!!
算法分析:
回到正题,给出的n堆纸牌中,由于分配不均,肯定存在牌数最多的一堆,我们就从这里开始。经过简单分析,因为题目只允许将中间牌堆上的牌放到左右两边,得出以下参考思路:
我们将所有牌的数量除以总堆数的结果称为平均值;
我们将某一堆上牌的总数与平均值之差称为需求值;
找到牌数最多的牌堆,将牌分成两部分,一部分的数量是该堆左边每堆牌需求值总和,另一部分的数量是右边每堆牌需求值总和,然后分别放置到左右两边。
向左右两边继续执行这样的操作,由于已经执行过的部分已经达到平均值,无需改变,所以这种算法具有无后效性,只需将最中间的牌向两边摊开就行。
这时我突然意识到一个问题,如果用这种思路设计算法,那么代码设计会相对繁琐,因为要实现规划左右两段的功能,于是竞赛书上的写法使我虎躯一震,真的没想到还有这种操作,果然竞赛靠的还是一个巧。
那就是:
假设一组牌堆,3 7 17 13,写成需求值的形式是-7 -3 7 3,我们把 -7 移到 -3 里去,把 -7 变成 0,-3 变成 -10(相当于-3那一堆挪7张牌到-7那一堆,但是可以在算法中写成此种形式),
-10 再移到 7 里去,7 变成 -3,最后把 -3 移到 3 里去,大功告成。
很明显这种思路比我的思路要来的简单一些,代码量更少,那么我就只分析这种算法(其实是我懒)。
设置一个关键数组a,储存所有牌堆的牌数。
设置一个变量avg,储存均值。
设置一个变量tot,储存移动总步骤。
我们首先要将需求值计算出来放进一个数组,我嫌麻烦,所以将数组a再次利用了一次,将需求值覆盖原数组。
接下来就是算法核心部分的编写,我们需要遍历一遍数组,执行上面那个思路:
for(int t=i;t<j;t++) { a[t+1]+=a[t]; a[t]=0; tot++; }
这就是核心代码,很简单,不过有些细节还要处理。
注意:要 素 察 觉,如果开头和结尾的牌堆的需求值为0,那么此牌堆无需移动。正确姿势应该是从第一个需求值不为0的牌堆移动到最后一个需求值不为0的牌堆。
而且,在移动过程中如果出现恰好前后两牌堆需求值合并得到的值为0的情况,可以跳过一步,相当于遍历到此牌堆时,前面的需求值恰好抵消,等同于已经完成了一轮均分。
因此,现在需求值为0的那个牌堆不需要再移动。
得到如下代码:
i=0;j=n-1; while(a[i]==0&&i<n) i++; while(a[j]==0&&j>1) j--; for(int t=i;t<j;t++) { if(a[t]==0) continue; a[t+1]+=a[t]; a[t]=0; tot++; }
样例代码:
#include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> using namespace std; int main() { int avg=0,n,a[101],i,tot=0,j; scanf("%d",&n); for(i=0;i<n;i++) { scanf("%d",&a[i]); avg+=a[i]; } avg/=i; for(j=0;j<n;j++) a[j]-=avg; i=0;j=n-1; while(a[i]==0&&i<n) i++; while(a[j]==0&&j>1) j--; for(int t=i;t<j;t++) { if(a[t]==0) continue; a[t+1]+=a[t]; a[t]=0; tot++; } printf("%d",tot); return 0; }
2019-02-08 19:36:03
以上是关于均分纸牌(Noip2002)的主要内容,如果未能解决你的问题,请参考以下文章