LinkedList(JDK1.8)源码分析

Posted androidsuperman

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LinkedList(JDK1.8)源码分析相关的知识,希望对你有一定的参考价值。

双向循环链表
双向循环链表和双向链表的不同在于,第一个节点的pre指向最后一个节点,最后一个节点的next指向第一个节点,也形成一个“环”。而LinkedList就是基于双向循环链表设计的。

技术分享图片

LinkedList 的继承关系

技术分享图片

LinkedList 是一个继承于AbstractSequentialList的双向循环链表。它也可以被当作堆栈、队列或双端队列进行操作。

public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable

LinkedList 实现 List 接口,能对它进行队列操作。
LinkedList 实现 Deque 接口,即能将LinkedList当作双端队列使用。
LinkedList 实现了Cloneable接口,即覆盖了函数clone(),能克隆。
LinkedList 实现java.io.Serializable接口,这意味着LinkedList支持序列化,能通过序列化去传输。
LinkedList 是非同步的。

LinkedList属性:

size:当前有多少个节点;

first:第一个节点;

last:最后一个节点;

public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
    //list的元素数量
    transient int size = 0;

    /**
     *第一个节点
     */
    transient Node<E> first;

    /**
     * 最后一个节点
     */
    transient Node<E> last;

LinkedList构造方法:

? 空的构造方法:表示初始化的时候,size为默认值0;first和last为空;

? 带入参的构造方法:

  1. this()调用默认无参构造方法;
  2. addAll()传进去入参的集合数据;
  3. 检查index索引范围 ;
  4. 得到集合数据
  5. 得到插入位置的前驱和后继节点
  6. 遍历数据,将数据插入到指定位置
 /**
     * 空构造函数
     */
    public LinkedList() {
    }

    /**
     *构造一个包含指定 collection 中的元素的列表,这些元素按其 collection 的迭代器返回的顺序排列
     */
    public LinkedList(Collection<? extends E> c) {
        this();
        addAll(c);
    }
 /**
     * 将集合从指定位置开始插入
     * 1. 检查index索引范围 
     * 2. 得到集合数据 
     * 3. 得到插入位置的前驱和后继节点 
     * 4. 遍历数据,将数据插入到指定位置
     */
    public boolean addAll(int index, Collection<? extends E> c) {
        //检查index范围
        checkPositionIndex(index);
        //得到集合的数据
        Object[] a = c.toArray();
        int numNew = a.length;
        if (numNew == 0)
            return false;
        //得到插入位置的前驱节点和后继节点
        Node<E> pred, succ;
        //位置为尾部,前驱节点为last,后继节点为null
        if (index == size) {
            succ = null;
            pred = last;
        } else {
        //调用node()方法得到后继节点,再得到前驱节点
            succ = node(index);
            pred = succ.prev;
        }
        //遍历数据将数据插入
        for (Object o : a) {
            @SuppressWarnings("unchecked") E e = (E) o;
            //创建新节点
            Node<E> newNode = new Node<>(pred, e, null);
            //前置节点为空,插入位置在链表头部
            if (pred == null)
                first = newNode;
            else
                pred.next = newNode;
            pred = newNode;
        }
        //如果插入位置在尾部,重置last节点
        if (succ == null) {
            last = pred;
        } else {
        //否则,将插入的链表与先前链表连接起来
            pred.next = succ;
            succ.prev = pred;
        }

        size += numNew;
        modCount++;
        return true;
    }

新增元素操作:

/**
     *  将一个元素添加至list尾部
     */
    public boolean add(E e) {
        linkLast(e);
        return true;
    }

指定位置添加元素:

  1. 检查index的范围,否则抛出异常
  2. 如果插入位置是链表尾部,那么调用linkLast方法
  3. 如果插入位置是链表中间,那么调用linkBefore方法
/**
     * 指定位置添加元素
     *1. 检查index的范围,否则抛出异常 
     *2. 如果插入位置是链表尾部,那么调用linkLast方法 
     *3. 如果插入位置是链表中间,那么调用linkBefore方法
     */
    public void add(int index, E element) {
         //检查索引是否处于[0-size]之间
        checkPositionIndex(index);
        //添加在链表尾部
        if (index == size)
            linkLast(element);
        else
        //添加在链表中间
            linkBefore(element, node(index));
    }

linkBefore 非空节点前插入元素图示:

技术分享图片

检索操作总结:

检索操作分为按照位置得到对象以及按照对象得到位置两种方式,其中按照对象得到位置的方法有indexOf()和lastIndexOf();按照位置得到对象有如下方法: 

  • 根据任意位置得到数据的get(int index)方法,当index越界会抛出异常 
  • 获得头节点数据 
  • getFirst()和element()方法在链表为空时会抛出NoSuchElementException 
  • peek()和peekFirst()方法在链表为空时会返回null 
  • 获得尾节点数据 
  • getLast()在链表为空时会抛出NoSuchElementException 
  • peekLast()在链表为空时会返回null

get方法:

 /**
     * 检索指定位置元素,索引越界,抛出异常
     */
    public E get(int index) {
        checkElementIndex(index);
        return node(index).item;
    }
    /**
     * 返回指定位置的非空节点
     */
    Node<E> node(int index) {
        // assert isElementIndex(index);
        //如果索引位置靠链表前半部分,从头开始遍历
        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
         //否则,从尾开始遍历
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

getFirst操作和getLast操作:

    /**
     * Returns the first element in this list.
     *
     * @return the first element in this list
     * @throws NoSuchElementException if this list is empty
     */
    public E getFirst() {
        final Node<E> f = first;
        if (f == null)
        //链表为null,抛出异常
            throw new NoSuchElementException();
        return f.item;
    }

    /**
     * 链表为空时,会抛出NoSuchElementException
     */
    public E getLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return l.item;
    }

删除操作总结

删除操作由很多种方法,有: 

  • 按照指定对象删除:boolean remove(Object o),一次只会删除一个匹配的对象 
  • 按照指定位置删除 
  • 删除任意位置的对象:E remove(int index),当index越界时会抛出异常 
  • 删除头节点位置的对象 
  • 在链表为空时抛出异常:E remove()、E removeFirst()、E pop() 
  • 在链表为空时返回null:E poll()、E pollFirst() 
  • 删除尾节点位置的对象 
  • 在链表为空时抛出异常:E removeLast() 
  • 在链表为空时返回null:E pollLast()
remove()方法:

移除第一个节点,将第一个节点置空,让下一个节点变成第一个节点,链表长度减1,修改次数加1,返回移除的第一个节点。

/**
     * 在链表为空时将抛出NoSuchElementException
     */
    public E remove() {
        return removeFirst();
    }

removeFirst()方法:

  /**
     * Removes and returns the first element from this list.
     *
     * @return the first element from this list
     * @throws NoSuchElementException if this list is empty
     */
    public E removeFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return unlinkFirst(f);
    }
    /**
     * Unlinks non-null first node f.
     */
    private E unlinkFirst(Node<E> f) {
        // assert f == first && f != null;
        final E element = f.item;
        final Node<E> next = f.next;
        //第一个节点置空
        f.item = null;
        f.next = null; // help GC
        //下一个节点变成第一个节点
        first = next;
        if (next == null)
            last = null;
        else
            next.prev = null;
        //链表长度减1
        size--;
        //修改次数加1
        modCount++;
        return element;
    }
remove(int index)方法:

删除任意位置的元素,如果删除成功将返回true,否则返回false

    1. 检查index范围,属于[0,size)
    1. 将索引出节点删除
/**
     * 删除任意位置的元素,如果删除成功将返回true,否则返回false
     * 1. 检查index范围,属于[0,size) 
     * 2. 将索引出节点删除
     */
    public E remove(int index) {
    //检查index范围
        checkElementIndex(index);
    //将节点删除    
        return unlink(node(index));
    }

set方法:

 public E set(int index, E element) {
    //检查index是否越界
        checkElementIndex(index);
        //索引index位置的节点
        Node<E> x = node(index);
        //index位置的节点内容替换为element
        E oldVal = x.item;
        x.item = element;
        //返回原来旧的值
        return oldVal;
    }

clear方法:

 public void clear() {
       //遍历链表,置空链表元素
        for (Node<E> x = first; x != null; ) {
            Node<E> next = x.next;
            x.item = null;
            x.next = null;
            x.prev = null;
            x = next;
        }
        first = last = null;
        //修改链表长度为0
        size = 0;
        //修改次数加一
        modCount++;
    }

listIterator方法:

    /**
     * 在ListIterator的构造器中,得到了当前位置的节点,就是变量next。next()方法返回当前节点的值并将      *next指向其后继节点,previous()方法返回当前节点的前一个节点的值并将next节点指向其前驱节点。由于      *Node是一个双端节点,所以这儿用了一个节点就可以实现从前向后迭代和从后向前迭代。另外在                *ListIterator初始时,exceptedModCount保存了当前的modCount,如果在迭代期间,有操作改变了链表      *的底层结构,那么再操作迭代器的方法时将会抛出ConcurrentModificationException。
     */
    public ListIterator<E> listIterator(int index) {
        checkPositionIndex(index);
        return new ListItr(index);
    }

LinkedList 源码解析:

节点对象:

/**
 *节点对象
 */
private static class Node<E> {
    // 当前存储元素
    E item;
    // 下一个元素节点
    Node<E> next;
    // 上一个元素节点
    Node<E> prev;

    Node(Node<E> prev, E element, Node<E> next) {
        this.item = element;
        this.next = next;
        this.prev = prev;
    }
}
package java.util;

import java.util.function.Consumer;

public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
    //list的元素数量
    transient int size = 0;

    /**
     *第一个节点
     */
    transient Node<E> first;

    /**
     * 最后一个节点
     */
    transient Node<E> last;

    /**
     * 空构造函数
     */
    public LinkedList() {
    }

    /**
     *构造一个包含指定 collection 中的元素的列表,这些元素按其 collection 的迭代器返回的顺序排列
     */
    public LinkedList(Collection<? extends E> c) {
        this();
        addAll(c);
    }

    /**
     * Links e as first element.
     */
    private void linkFirst(E e) {
        final Node<E> f = first;
        //新建节点,以头节点为后继节点
        final Node<E> newNode = new Node<>(null, e, f);
        first = newNode;
        //如果链表为空,last节点也指向该节点
        if (f == null)
            last = newNode;
        else
        //否则,将头节点的前驱指针指向新节点
            f.prev = newNode;
        size++;
        modCount++;
    }

    /**
     * Links e as last element.
     */
    void linkLast(E e) {
        //指向链表尾部
        final Node<E> l = last;
        //以尾部为前驱节点创建一个新节点
        final Node<E> newNode = new Node<>(l, e, null);
        //将链表尾部指向新节点
        last = newNode;
        //如果链表为空,那么该节点既是头节点也是尾节点
        if (l == null)
            first = newNode;
        else
            l.next = newNode;
        //增加集合大小
        size++;
        modCount++;
    }

    /**
     * 非空节点前插入元素
     * 1. 创建newNode节点,将newNode的后继指针指向succ,前驱指针指向pred 
     * 2. 将succ的前驱指针指向newNode 
     * 3. 根据pred是否为null,进行不同操作。 
     * - 如果pred为null,说明该节点插入在头节点之前,要重置first头节点 
     * - 如果pred不为null,那么直接将pred的后继指针指向newNode即可
     */
    void linkBefore(E e, Node<E> succ) {
        // assert succ != null;
        final Node<E> pred = succ.prev;
        final Node<E> newNode = new Node<>(pred, e, succ);
        succ.prev = newNode;
        if (pred == null)
            first = newNode;
        else
            pred.next = newNode;
        size++;
        modCount++;
    }

    /**
     * Unlinks non-null first node f.
     */
    private E unlinkFirst(Node<E> f) {
        // assert f == first && f != null;
        final E element = f.item;
        final Node<E> next = f.next;
        f.item = null;
        f.next = null; // help GC
        first = next;
        if (next == null)
            last = null;
        else
            next.prev = null;
        size--;
        modCount++;
        return element;
    }

    /**
     * Unlinks non-null last node l.
     */
    private E unlinkLast(Node<E> l) {
        // assert l == last && l != null;
        final E element = l.item;
        final Node<E> prev = l.prev;
        l.item = null;
        l.prev = null; // help GC
        last = prev;
        if (prev == null)
            first = null;
        else
            prev.next = null;
        size--;
        modCount++;
        return element;
    }

    /**
     * 从链表中移除元素
     * 1 得到待删除节点的前驱节点和后继节点
     * 2 删除前驱节点 
     * 3 删除后继节点
     */
    E unlink(Node<E> x) {
        // assert x != null;
        final E element = x.item;
        //后继节点
        final Node<E> next = x.next;
        //前驱节点
        final Node<E> prev = x.prev;
        
        //删除前驱指针
        if (prev == null) {
        //如果删除的节点是头节点,令头节点指向该节点的后继节点
            first = next;
        } else {
        //将前驱节点的后继节点指向后继节点
            prev.next = next;
            x.prev = null;
        }
        
        //删除后继指针
        if (next == null) {
        //如果删除的节点是尾节点,令尾节点指向该节点的前驱节点
            last = prev;
        } else {
            next.prev = prev;
            x.next = null;
        }

        x.item = null;
        size--;
        modCount++;
        return element;
    }

    /**
     * Returns the first element in this list.
     *
     * @return the first element in this list
     * @throws NoSuchElementException if this list is empty
     */
    public E getFirst() {
        final Node<E> f = first;
        if (f == null)
        //链表为null,抛出异常
            throw new NoSuchElementException();
        return f.item;
    }

    /**
     * 链表为空时,会抛出NoSuchElementException
     */
    public E getLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return l.item;
    }

    /**
     * Removes and returns the first element from this list.
     *
     * @return the first element from this list
     * @throws NoSuchElementException if this list is empty
     */
    public E removeFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return unlinkFirst(f);
    }

    /**
     * Removes and returns the last element from this list.
     *
     * @return the last element from this list
     * @throws NoSuchElementException if this list is empty
     */
    public E removeLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return unlinkLast(l);
    }

    /**
     *list头部添加指定元素
     */
    public void addFirst(E e) {
        linkFirst(e);
    }

    /**
     * 将元素添加到链表尾部,与add()方法一样。所以实现也一样
     */
    public void addLast(E e) {
        linkLast(e);
    }

    /**
     * 检查对象o是否存在于链表中
     */
    public boolean contains(Object o) {
        //返回结果不是-1,那就说明该对象存在于链表中
        return indexOf(o) != -1;
    }

    /**
     * Returns the number of elements in this list.
     *
     * @return the number of elements in this list
     */
    public int size() {
        return size;
    }

    /**
     *  将一个元素添加至list尾部
     */
    public boolean add(E e) {
        linkLast(e);
        return true;
    }

    /**
     * 删除指定元素
     */
    public boolean remove(Object o) {
        //如果删除对象为null
        if (o == null) {
            //从前向后遍历
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
         //从前向后遍历
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item)) {
                    unlink(x);
                    //匹配返回true
                    return true;
                }
            }
        }
        return false;
    }

    /**
     * 将集合插入到链表尾部,即开始索引位置为size
     */
    public boolean addAll(Collection<? extends E> c) {
        return addAll(size, c);
    }

    /**
     * 将集合从指定位置开始插入
     * 1. 检查index索引范围 
     * 2. 得到集合数据 
     * 3. 得到插入位置的前驱和后继节点 
     *4. 遍历数据,将数据插入到指定位置
     */
    public boolean addAll(int index, Collection<? extends E> c) {
        //检查index范围
        checkPositionIndex(index);
        //得到集合的数据
        Object[] a = c.toArray();
        int numNew = a.length;
        if (numNew == 0)
            return false;
        //得到插入位置的前驱节点和后继节点
        Node<E> pred, succ;
        //位置为尾部,前驱节点为last,后继节点为null
        if (index == size) {
            succ = null;
            pred = last;
        } else {
        //调用node()方法得到后继节点,再得到前驱节点
            succ = node(index);
            pred = succ.prev;
        }
        //遍历数据将数据插入
        for (Object o : a) {
            @SuppressWarnings("unchecked") E e = (E) o;
            //创建新节点
            Node<E> newNode = new Node<>(pred, e, null);
            //前置节点为空,插入位置在链表头部
            if (pred == null)
                first = newNode;
            else
                pred.next = newNode;
            pred = newNode;
        }
        //如果插入位置在尾部,重置last节点
        if (succ == null) {
            last = pred;
        } else {
        //否则,将插入的链表与先前链表连接起来
            pred.next = succ;
            succ.prev = pred;
        }

        size += numNew;
        modCount++;
        return true;
    }

    
    public void clear() {
       //遍历链表,置空链表元素
        for (Node<E> x = first; x != null; ) {
            Node<E> next = x.next;
            x.item = null;
            x.next = null;
            x.prev = null;
            x = next;
        }
        first = last = null;
        //修改链表长度为0
        size = 0;
        //修改次数加一
        modCount++;
    }

    /**
     * 检索指定位置元素,索引越界,抛出异常
     */
    public E get(int index) {
        checkElementIndex(index);
        return node(index).item;
    }

   
    public E set(int index, E element) {
    //检查index是否越界
        checkElementIndex(index);
        //索引index位置的节点
        Node<E> x = node(index);
        //index位置的节点内容替换为element
        E oldVal = x.item;
        x.item = element;
        //返回原来旧的值
        return oldVal;
    }

    /**
     * 指定位置添加元素
     *1. 检查index的范围,否则抛出异常 
     *2. 如果插入位置是链表尾部,那么调用linkLast方法 
     *3. 如果插入位置是链表中间,那么调用linkBefore方法
     */
    public void add(int index, E element) {
         //检查索引是否处于[0-size]之间
        checkPositionIndex(index);
        //添加在链表尾部
        if (index == size)
            linkLast(element);
        else
        //添加在链表中间
            linkBefore(element, node(index));
    }

    /**
     * 删除任意位置的元素,如果删除成功将返回true,否则返回false
     * 1. 检查index范围,属于[0,size) 
     * 2. 将索引出节点删除
     */
    public E remove(int index) {
    //检查index范围
        checkElementIndex(index);
    //将节点删除    
        return unlink(node(index));
    }

    /**
     * Tells if the argument is the index of an existing element.
     */
    private boolean isElementIndex(int index) {
        return index >= 0 && index < size;
    }

    /**
     * Tells if the argument is the index of a valid position for an
     * iterator or an add operation.
     */
    private boolean isPositionIndex(int index) {
        return index >= 0 && index <= size;
    }

    /**
     * Constructs an IndexOutOfBoundsException detail message.
     * Of the many possible refactorings of the error handling code,
     * this "outlining" performs best with both server and client VMs.
     */
    private String outOfBoundsMsg(int index) {
        return "Index: "+index+", Size: "+size;
    }

    private void checkElementIndex(int index) {
        if (!isElementIndex(index))
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    private void checkPositionIndex(int index) {
        if (!isPositionIndex(index))
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    /**
     * 返回指定位置的非空节点
     */
    Node<E> node(int index) {
        // assert isElementIndex(index);
        //如果索引位置靠链表前半部分,从头开始遍历
        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
         //否则,从尾开始遍历
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

    // Search Operations

    /**
     *返回第一个匹配的索引
     */
    public int indexOf(Object o) {
        int index = 0;
        if (o == null) {
         //从头往后遍历,元素为空的时候的检索,此处可以观察到LinkedList是支持空元素的
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null)
                    return index;
                index++;
            }
        } else {
          //从头往后遍历,元素不为空的时候的检索
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item))
                    return index;
                index++;
            }
        }
        return -1;
    }

    /**
     *返回最后一个匹配的索引
     */
    public int lastIndexOf(Object o) {
        int index = size;
        if (o == null) {
        //从后向前遍历,元素为空,返回
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (x.item == null)
                    return index;
            }
        } else {
         //从后向前遍历,元素不为空,匹配的情况下返回
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (o.equals(x.item))
                    return index;
            }
        }
        return -1;
    }

    // Queue operations.

    /**
     * Retrieves, but does not remove, the head (first element) of this list.
     *
     * @return the head of this list, or {@code null} if this list is empty
     * @since 1.5
     */
    public E peek() {
        final Node<E> f = first;
        //不会抛出异常,但是会返回null
        return (f == null) ? null : f.item;
    }

    /**
     * Retrieves, but does not remove, the head (first element) of this list.
     *
     * @return the head of this list
     * @throws NoSuchElementException if this list is empty
     * @since 1.5
     */
    public E element() {
        return getFirst();
    }

    /**
     * 在链表为空时将返回null
     */
    public E poll() {
        final Node<E> f = first;
        return (f == null) ? null : unlinkFirst(f);
    }

    /**
     * 在链表为空时将抛出NoSuchElementException
     */
    public E remove() {
        return removeFirst();
    }

    /**
     * 将数据添加到链表尾部,其内部调用了add(E e)方法
     */
    public boolean offer(E e) {
        return add(e);
    }

    /**
     *将数据插入链表头部
     */
    public boolean offerFirst(E e) {
        addFirst(e);
        return true;
    }

    /**
     * 数据添加到链表尾部
     */
    public boolean offerLast(E e) {
        addLast(e);
        return true;
    }

    /**
     * Retrieves, but does not remove, the first element of this list,
     * or returns {@code null} if this list is empty.
     *
     * @return the first element of this list, or {@code null}
     *         if this list is empty
     * @since 1.6
     */
    public E peekFirst() {
        final Node<E> f = first;
        return (f == null) ? null : f.item;
     }

    /**
     * 为空,返回null,不会抛异常
     */
    public E peekLast() {
        final Node<E> l = last;
        return (l == null) ? null : l.item;
    }

    /**
     * Retrieves and removes the first element of this list,
     * or returns {@code null} if this list is empty.
     *
     * @return the first element of this list, or {@code null} if
     *     this list is empty
     * @since 1.6
     */
    public E pollFirst() {
        final Node<E> f = first;
        return (f == null) ? null : unlinkFirst(f);
    }

    /**
     * 链表为空时会返回null,而不是抛出异常
     */
    public E pollLast() {
        final Node<E> l = last;
        return (l == null) ? null : unlinkLast(l);
    }

    /**
     * Pushes an element onto the stack represented by this list.  In other
     * words, inserts the element at the front of this list.
     *
     * <p>This method is equivalent to {@link #addFirst}.
     *
     * @param e the element to push
     * @since 1.6
     */
    public void push(E e) {
        addFirst(e);
    }

    /**
     * 在链表为空时将抛出NoSuchElementException
     */
    public E pop() {
        return removeFirst();
    }

    /**
     * Removes the first occurrence of the specified element in this
     * list (when traversing the list from head to tail).  If the list
     * does not contain the element, it is unchanged.
     *
     * @param o element to be removed from this list, if present
     * @return {@code true} if the list contained the specified element
     * @since 1.6
     */
    public boolean removeFirstOccurrence(Object o) {
        return remove(o);
    }

    /**
     * 链表为空时将抛出NoSuchElementException
     */
    public boolean removeLastOccurrence(Object o) {
        if (o == null) {
            for (Node<E> x = last; x != null; x = x.prev) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
            for (Node<E> x = last; x != null; x = x.prev) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }

    /**
     * 在ListIterator的构造器中,得到了当前位置的节点,就是变量next。next()方法返回当前节点的值并将      *next指向其后继节点,previous()方法返回当前节点的前一个节点的值并将next节点指向其前驱节点。由于      *Node是一个双端节点,所以这儿用了一个节点就可以实现从前向后迭代和从后向前迭代。另外在                *ListIterator初始时,exceptedModCount保存了当前的modCount,如果在迭代期间,有操作改变了链表      *的底层结构,那么再操作迭代器的方法时将会抛出ConcurrentModificationException。
     */
    public ListIterator<E> listIterator(int index) {
        checkPositionIndex(index);
        return new ListItr(index);
    }

    private class ListItr implements ListIterator<E> {
        private Node<E> lastReturned;
        private Node<E> next;
        private int nextIndex;
        //保存当前modCount,确保fail-fast机制
        private int expectedModCount = modCount;

        ListItr(int index) {
            // assert isPositionIndex(index);
            //得到当前索引指向的next节点
            next = (index == size) ? null : node(index);
            nextIndex = index;
        }

        public boolean hasNext() {
            return nextIndex < size;
        }
        /**
         *获取下一个节点
         */
        public E next() {
            checkForComodification();
            if (!hasNext())
                throw new NoSuchElementException();

            lastReturned = next;
            next = next.next;
            nextIndex++;
            return lastReturned.item;
        }

        public boolean hasPrevious() {
            return nextIndex > 0;
        }
        
        /**
         *获取前一个节点,将next节点向前移
         */
        public E previous() {
            checkForComodification();
            if (!hasPrevious())
                throw new NoSuchElementException();

            lastReturned = next = (next == null) ? last : next.prev;
            nextIndex--;
            return lastReturned.item;
        }

        public int nextIndex() {
            return nextIndex;
        }

        public int previousIndex() {
            return nextIndex - 1;
        }

        public void remove() {
            checkForComodification();
            if (lastReturned == null)
                throw new IllegalStateException();

            Node<E> lastNext = lastReturned.next;
            unlink(lastReturned);
            if (next == lastReturned)
                next = lastNext;
            else
                nextIndex--;
            lastReturned = null;
            expectedModCount++;
        }

        public void set(E e) {
            if (lastReturned == null)
                throw new IllegalStateException();
            checkForComodification();
            lastReturned.item = e;
        }

        public void add(E e) {
            checkForComodification();
            lastReturned = null;
            if (next == null)
                linkLast(e);
            else
                linkBefore(e, next);
            nextIndex++;
            expectedModCount++;
        }

        public void forEachRemaining(Consumer<? super E> action) {
            Objects.requireNonNull(action);
            while (modCount == expectedModCount && nextIndex < size) {
                action.accept(next.item);
                lastReturned = next;
                next = next.next;
                nextIndex++;
            }
            checkForComodification();
        }

        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }
    /**
     *节点对象
     */
    private static class Node<E> {
        // 当前存储元素
        E item;
        // 下一个元素节点
        Node<E> next;
        // 上一个元素节点
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

    /**
     * @since 1.6
     */
    public Iterator<E> descendingIterator() {
        return new DescendingIterator();
    }

    /**
     * Adapter to provide descending iterators via ListItr.previous
     */
    private class DescendingIterator implements Iterator<E> {
        private final ListItr itr = new ListItr(size());
        public boolean hasNext() {
            return itr.hasPrevious();
        }
        public E next() {
            return itr.previous();
        }
        public void remove() {
            itr.remove();
        }
    }

    @SuppressWarnings("unchecked")
    private LinkedList<E> superClone() {
        try {
            return (LinkedList<E>) super.clone();
        } catch (CloneNotSupportedException e) {
            throw new InternalError(e);
        }
    }

    /**
     * Returns a shallow copy of this {@code LinkedList}. (The elements
     * themselves are not cloned.)
     *
     * @return a shallow copy of this {@code LinkedList} instance
     */
    public Object clone() {
        LinkedList<E> clone = superClone();

        // Put clone into "virgin" state
        clone.first = clone.last = null;
        clone.size = 0;
        clone.modCount = 0;

        // Initialize clone with our elements
        for (Node<E> x = first; x != null; x = x.next)
            clone.add(x.item);

        return clone;
    }

    /**
     * Returns an array containing all of the elements in this list
     * in proper sequence (from first to last element).
     *
     * <p>The returned array will be "safe" in that no references to it are
     * maintained by this list.  (In other words, this method must allocate
     * a new array).  The caller is thus free to modify the returned array.
     *
     * <p>This method acts as bridge between array-based and collection-based
     * APIs.
     *
     * @return an array containing all of the elements in this list
     *         in proper sequence
     */
    public Object[] toArray() {
        Object[] result = new Object[size];
        int i = 0;
        for (Node<E> x = first; x != null; x = x.next)
            result[i++] = x.item;
        return result;
    }

    /**
     * Returns an array containing all of the elements in this list in
     * proper sequence (from first to last element); the runtime type of
     * the returned array is that of the specified array.  If the list fits
     * in the specified array, it is returned therein.  Otherwise, a new
     * array is allocated with the runtime type of the specified array and
     * the size of this list.
     *
     * <p>If the list fits in the specified array with room to spare (i.e.,
     * the array has more elements than the list), the element in the array
     * immediately following the end of the list is set to {@code null}.
     * (This is useful in determining the length of the list <i>only</i> if
     * the caller knows that the list does not contain any null elements.)
     *
     * <p>Like the {@link #toArray()} method, this method acts as bridge between
     * array-based and collection-based APIs.  Further, this method allows
     * precise control over the runtime type of the output array, and may,
     * under certain circumstances, be used to save allocation costs.
     *
     * <p>Suppose {@code x} is a list known to contain only strings.
     * The following code can be used to dump the list into a newly
     * allocated array of {@code String}:
     *
     * <pre>
     *     String[] y = x.toArray(new String[0]);</pre>
     *
     * Note that {@code toArray(new Object[0])} is identical in function to
     * {@code toArray()}.
     *
     * @param a the array into which the elements of the list are to
     *          be stored, if it is big enough; otherwise, a new array of the
     *          same runtime type is allocated for this purpose.
     * @return an array containing the elements of the list
     * @throws ArrayStoreException if the runtime type of the specified array
     *         is not a supertype of the runtime type of every element in
     *         this list
     * @throws NullPointerException if the specified array is null
     */
    @SuppressWarnings("unchecked")
    public <T> T[] toArray(T[] a) {
        if (a.length < size)
            a = (T[])java.lang.reflect.Array.newInstance(
                                a.getClass().getComponentType(), size);
        int i = 0;
        Object[] result = a;
        for (Node<E> x = first; x != null; x = x.next)
            result[i++] = x.item;

        if (a.length > size)
            a[size] = null;

        return a;
    }

    private static final long serialVersionUID = 876323262645176354L;

    /**
     * Saves the state of this {@code LinkedList} instance to a stream
     * (that is, serializes it).
     *
     * @serialData The size of the list (the number of elements it
     *             contains) is emitted (int), followed by all of its
     *             elements (each an Object) in the proper order.
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException {
        // Write out any hidden serialization magic
        s.defaultWriteObject();

        // Write out size
        s.writeInt(size);

        // Write out all elements in the proper order.
        for (Node<E> x = first; x != null; x = x.next)
            s.writeObject(x.item);
    }

    /**
     * Reconstitutes this {@code LinkedList} instance from a stream
     * (that is, deserializes it).
     */
    @SuppressWarnings("unchecked")
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        // Read in any hidden serialization magic
        s.defaultReadObject();

        // Read in size
        int size = s.readInt();

        // Read in all elements in the proper order.
        for (int i = 0; i < size; i++)
            linkLast((E)s.readObject());
    }

    /**
     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
     * list.
     *
     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and
     * {@link Spliterator#ORDERED}.  Overriding implementations should document
     * the reporting of additional characteristic values.
     *
     * @implNote
     * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}
     * and implements {@code trySplit} to permit limited parallelism..
     *
     * @return a {@code Spliterator} over the elements in this list
     * @since 1.8
     */
    @Override
    public Spliterator<E> spliterator() {
        return new LLSpliterator<E>(this, -1, 0);
    }

    /** A customized variant of Spliterators.IteratorSpliterator */
    static final class LLSpliterator<E> implements Spliterator<E> {
        static final int BATCH_UNIT = 1 << 10;  // batch array size increment
        static final int MAX_BATCH = 1 << 25;  // max batch array size;
        final LinkedList<E> list; // null OK unless traversed
        Node<E> current;      // current node; null until initialized
        int est;              // size estimate; -1 until first needed
        int expectedModCount; // initialized when est set
        int batch;            // batch size for splits

        LLSpliterator(LinkedList<E> list, int est, int expectedModCount) {
            this.list = list;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getEst() {
            int s; // force initialization
            final LinkedList<E> lst;
            if ((s = est) < 0) {
                if ((lst = list) == null)
                    s = est = 0;
                else {
                    expectedModCount = lst.modCount;
                    current = lst.first;
                    s = est = lst.size;
                }
            }
            return s;
        }

        public long estimateSize() { return (long) getEst(); }

        public Spliterator<E> trySplit() {
            Node<E> p;
            int s = getEst();
            if (s > 1 && (p = current) != null) {
                int n = batch + BATCH_UNIT;
                if (n > s)
                    n = s;
                if (n > MAX_BATCH)
                    n = MAX_BATCH;
                Object[] a = new Object[n];
                int j = 0;
                do { a[j++] = p.item; } while ((p = p.next) != null && j < n);
                current = p;
                batch = j;
                est = s - j;
                return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED);
            }
            return null;
        }

        public void forEachRemaining(Consumer<? super E> action) {
            Node<E> p; int n;
            if (action == null) throw new NullPointerException();
            if ((n = getEst()) > 0 && (p = current) != null) {
                current = null;
                est = 0;
                do {
                    E e = p.item;
                    p = p.next;
                    action.accept(e);
                } while (p != null && --n > 0);
            }
            if (list.modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }

        public boolean tryAdvance(Consumer<? super E> action) {
            Node<E> p;
            if (action == null) throw new NullPointerException();
            if (getEst() > 0 && (p = current) != null) {
                --est;
                E e = p.item;
                current = p.next;
                action.accept(e);
                if (list.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                return true;
            }
            return false;
        }

        public int characteristics() {
            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
        }
    }

}





以上是关于LinkedList(JDK1.8)源码分析的主要内容,如果未能解决你的问题,请参考以下文章

集合之LinkedList(含JDK1.8源码分析)

jdk1.8-LinkedList源码分析

LinkedList源码分析_JDK1.8.0_191

Java基础—基于JDK1.8的LinkedList源码分析

ReentrantLock源码分析--jdk1.8

AQS源码分析--jdk1.8