神经网络训练代码
Posted hkkeryu
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了神经网络训练代码相关的知识,希望对你有一定的参考价值。
# 2019/2/7 # In[2]: import numpy # scipy.special for the sigmoid function expit() import scipy.special # library for plotting arrays import matplotlib.pyplot # ensure the plots are inside this notebook, not an external window get_ipython().magic(‘matplotlib inline‘) # In[3]: # neural network class definition class neuralNetwork: # initialise the neural network def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate): # set number of nodes in each input, hidden, output layer self.inodes = inputnodes self.hnodes = hiddennodes self.onodes = outputnodes # link weight matrices, wih and who # weights inside the arrays are w_i_j, where link is from node i to node j in the next layer # w11 w21 # w12 w22 etc self.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes)) self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes)) # learning rate self.lr = learningrate # activation function is the sigmoid function self.activation_function = lambda x: scipy.special.expit(x) pass # train the neural network def train(self, inputs_list, targets_list): # convert inputs list to 2d array inputs = numpy.array(inputs_list, ndmin=2).T targets = numpy.array(targets_list, ndmin=2).T # calculate signals into hidden layer hidden_inputs = numpy.dot(self.wih, inputs) # calculate the signals emerging from hidden layer hidden_outputs = self.activation_function(hidden_inputs) # calculate signals into final output layer final_inputs = numpy.dot(self.who, hidden_outputs) # calculate the signals emerging from final output layer final_outputs = self.activation_function(final_inputs) # output layer error is the (target - actual) output_errors = targets - final_outputs # hidden layer error is the output_errors, split by weights, recombined at hidden nodes hidden_errors = numpy.dot(self.who.T, output_errors) # update the weights for the links between the hidden and output layers self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs)) # update the weights for the links between the input and hidden layers self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs)) pass # query the neural network def query(self, inputs_list): # convert inputs list to 2d array inputs = numpy.array(inputs_list, ndmin=2).T # calculate signals into hidden layer hidden_inputs = numpy.dot(self.wih, inputs) # calculate the signals emerging from hidden layer hidden_outputs = self.activation_function(hidden_inputs) # calculate signals into final output layer final_inputs = numpy.dot(self.who, hidden_outputs) # calculate the signals emerging from final output layer final_outputs = self.activation_function(final_inputs) return final_outputs # In[4]: # number of input, hidden and output nodes input_nodes = 400 hidden_nodes = 800 output_nodes = 13 # learning rate learning_rate = 0.1 # create instance of neural network n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate) # In[ ]: # load the mnist training data CSV file into a list training_data_file = open("data_sheet/train.csv", ‘r‘) training_data_list = training_data_file.readlines() training_data_file.close() print(training_data_list) # In[ ]: # train the neural network # epochs is the number of times the training data set is used for training epochs =500 for e in range(epochs): # go through all records in the training data set for record in training_data_list: # split the record by the ‘,‘ commas all_values = record.split(‘,‘) # scale and shift the inputs inputs = (numpy.asfarray(all_values[1:]) / 1.0 * 0.99) + 0.01 # create the target output values (all 0.01, except the desired label which is 0.99) targets = numpy.zeros(output_nodes) + 0.01 # all_values[0] is the target label for this record targets[int(all_values[0])-1] = 0.99 #+++ #print(targets) right n.train(inputs, targets) pass pass # In[ ]: # load the mnist test data CSV file into a list test_data_file = open("data_sheet/test.csv", ‘r‘) test_data_list = test_data_file.readlines() test_data_file.close() # In[ ]: # test the neural network # scorecard for how well the network performs, initially empty scorecard = [] # go through all the records in the test data set for record in test_data_list: # split the record by the ‘,‘ commas all_values = record.split(‘,‘) # correct answer is first value correct_label = int(all_values[0]) #++++++++ #print(correct_label) right #++++++++ # scale and shift the inputs inputs = (numpy.asfarray(all_values[1:]) / 1.0 * 0.99) + 0.01 # query the network outputs = n.query(inputs) print(outputs) # the index of the highest value corresponds to the label label = numpy.argmax(outputs)+1 # print(label) # append correct or incorrect to list if (label == correct_label): # network‘s answer matches correct answer, add 1 to scorecard scorecard.append(1) else: # network‘s answer doesn‘t match correct answer, add 0 to scorecard scorecard.append(0) pass pass # In[ ]: # In[ ]: print(scorecard) # In[ ]: # calculate the performance score, the fraction of correct answers scorecard_array = numpy.asarray(scorecard) print ("performance = ", scorecard_array.sum() / scorecard_array.size)
以上是关于神经网络训练代码的主要内容,如果未能解决你的问题,请参考以下文章
VSCode自定义代码片段14——Vue的axios网络请求封装
matlab BP神经网络的训练算法中训练函数(traingdm 、trainlm、trainbr)的实现过程及相应的VC源代码