numpy.linspace使用详解

Posted yang520ming

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了numpy.linspace使用详解相关的知识,希望对你有一定的参考价值。

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)

在指定的间隔内返回均匀间隔的数字。

返回num均匀分布的样本,在[start, stop]。

这个区间的端点可以任意的被排除在外。

 

Parameters(参数):

 

start : scalar(标量)

The starting value of the sequence(序列的起始点).

stop : scalar

序列的结束点,除非endpoint被设置为False,在这种情况下, the sequence consists of all but the last of num 1 evenly spaced samples(该序列包括所有除了最后的num+1上均匀分布的样本(感觉这样翻译有点坑)), 以致于stop被排除.当endpoint is False的时候注意步长的大小(下面有例子).

num : int, optional(可选)

生成的样本数,默认是50。必须是非负。

endpoint : bool, optional

如果是真,则一定包括stop,如果为False,一定不会有stop

retstep : bool, optional

If True, return (samples, step), where step is the spacing between samples.(看例子)

dtype : dtype, optional

The type of the output array. If dtype is not given, infer the data type from the other input arguments(推断这个输入用例从其他的输入中).

New in version 1.9.0.

Returns:

samples : ndarray

There are num equally spaced samples in the closed interval [start, stop] or the half-open interval [start, stop) (depending on whether endpoint is True or False).

step : float(只有当retstep设置为真的时候才会存在)

Only returned if retstep is True

Size of spacing between samples.

See also

arange
Similar to linspace, but uses a step size (instead of the number of samples).
arange使用的是步长,而不是样本的数量 
logspace
Samples uniformly distributed in log space.
 
当endpoint被设置为False的时候
>>> import numpy as np
>>> np.linspace(1, 10, 10)
array([  1.,   2.,   3.,   4.,   5.,   6.,   7.,   8.,   9.,  10.])
>>> np.linspace(1, 10, 10, endpoint = False)
array([ 1. ,  1.9,  2.8,  3.7,  4.6,  5.5,  6.4,  7.3,  8.2,  9.1])
In [4]: np.linspace(1, 10, 10, endpoint = False, retstep= True)
Out[4]: (array([ 1. ,  1.9,  2.8,  3.7,  4.6,  5.5,  6.4,  7.3,  8.2,  9.1]), 0.9)

 






以上是关于numpy.linspace使用详解的主要内容,如果未能解决你的问题,请参考以下文章

Python 之 NumPy 简介和创建数组

python numpy.linspace() 使用介绍

numpy.linspace()等差数列函数

numpy linspace

从日期时间创建 numpy linspace

用于多个开始和停止值的矢量化 NumPy linspace