数据结构_二叉树Ⅲ——堆与优先队列

Posted shengzhe

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据结构_二叉树Ⅲ——堆与优先队列相关的知识,希望对你有一定的参考价值。

堆(Heap)


堆是一种完全二叉树,只是是用数组的形式表示二叉树而已

它其实是利用完全二叉树的结构来维护一组数据

例如这样一棵完全二叉树:

  技术图片

  它用堆的形式表现就是这样的:

  技术图片

当然,一般的堆每个元素都是数字呢(不然小根堆与大根堆就没办法实现了呢)

大根堆与小根堆

顾名思义,大根堆/小根堆就是保证根节点是所有数据中最大/小,并且尽力让小的节点在上方

例如下面这个二叉树就是一个小根堆呢

  技术图片

(借鉴某书图片)

那如何将任意一个堆调整至大根堆/小根堆呢?

  1. 从上向下调整

    让当前结点与它的左右孩子进行比较,哪个比较小就和它交换,更新询问节点的下标为被交换的孩子节点下标,否则退出。

    void heapdown(int i) //传入一个需要向下调整的结点编号i
    {
       int t,flag=0;//flag用来标记是否需要继续向下调整 
       //当i结点有儿子的时候(其实是至少有左儿子的情况下)并且有需要继续调整的时候循环需执行
       while(i*2<=n&&flag==0)
       {        
           //首先判断他和他左儿子的关系,并用t记录值较小的结点编号 
           if(h[i]>h[i*2])
               t=i*2;
           else t=i; 
           //如果他有右儿子的情况下,再对右儿子进行讨论 
           if(i*2+1<=n)
           {
               //如果右儿子的值更小,更新较小的结点编号  
               if(h[t]>h[ i*2+1])
                   t=i*2+1;
           }
           //如果发现最小的结点编号不是自己,说明子结点中有比父结点更小的  
           if(t!=i)
           {
               swap(t,i);
               i=t;//更新i为刚才与它交换的儿子结点的编号,便于接下来继续向下调整 
           }
           else flag=1;//则否说明当前的父结点已经比两个子结点都要小了,不需要在进行调整了 
       }
       return;
    }
  2. 从下向上调整

    让当前结点和它的父亲节点比较,若比父亲节点小就交换,然后将当前询问的节点下标更新为原父亲节点下标,否则退出。 

    void heapup(int i) //传入一个需要向上调整的结点编号i
    {
       int flag=0; //用来标记是否需要继续向上调整
       if(i==1)  return; //如果是堆顶,就返回,不需要调整了    
       while(i!=1&&flag==0)
       {
           //判断是否比父结点的小 
           if(h[i]<h[i/2])
               swap(i,i/2);//交换他和他爸爸的位置 
           else flag=1;//表示已经不需要调整了,当前结点的值比父结点的值要大 
           i=i/2; //这句话很重要,更新编号i为它父结点的编号,从而便于下一次继续向上调整 
       }
       return;
    }

优先队列


优先队列其实是在普通队列的基础上增加了每个元素的优先性(值)

众所周知,普通队列是遵循元素先进先出的原则,进队只能从前面进,出队只能出最后一个

而优先队列不再遵循先入先出的原则,而是分为两种情况:

最大优先队列,无论入队顺序,当前最大的元素优先出队。

最小优先队列,无论入队顺序,当前最小的元素优先出队。

例如说下面的这个优先队列出队就需要出8这个元素

技术图片

但这种算法的时间复杂度并不理想

如果只用线性数据结构的话,入队和出队的时间复杂度都是O(n)

但我们如果通过二叉堆的方式,每次上浮最大的或最小的

这时出队和入队操作都只需要O(logn)的时间复杂度了

但从来不用STL的本蒟蒻只能用结构体而不会queue的操作QAQ

以上是关于数据结构_二叉树Ⅲ——堆与优先队列的主要内容,如果未能解决你的问题,请参考以下文章

【数据结构】堆(优先队列):二叉堆、d堆、左式堆、斜堆与二项队列

二叉堆与优先队列

python实现优先队列

二叉树1. 二叉树的基本概念

堆(插入删除)

纯数据结构Java实现(6/11)(二叉堆&优先队列)