一起来看CORE源码 ConcurrentDictionary

Posted qixinbo

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了一起来看CORE源码 ConcurrentDictionary相关的知识,希望对你有一定的参考价值。

 

先贴源码地址

https://github.com/dotnet/corefx/blob/master/src/System.Collections.Concurrent/src/System/Collections/Concurrent/ConcurrentDictionary.cs

.NET CORE很大一个好处就是代码的开源,你可以详细的查看你使用类的源代码,并学习微软的写法和实现思路。   

  这里我对.net core中ConcurrentDictionary源码进行了分析,里面采用了Volatile.Read和write(volatile作用:确保本条指令不会因编译器的优化而省略,且要求每次直接从内存地址读值,而不走寄存器),然后也使用了lock这种混合锁,而且还定义了更细颗粒度的锁。所以多线程使用ConcurrentDictionary集合还是比较好的选择。

       本来想把本篇放到我的《C#异步编程系列》,不过后来感觉那个系列写的已经算是收尾了,而且以后还会有写更多core源码分析的文字,所以就单独新增一个系列把。

ConcurrentDictionary内部私有类

先上源码,再仔细聊

/// <summary>
/// Tables that hold the internal state of the ConcurrentDictionary
///
/// Wrapping the three tables in a single object allows us to atomically
/// replace all tables at once.
/// </summary>
private sealed class Tables
{
    // A singly-linked list for each bucket.
    // 单链表数据结构的桶,里面的节点就是对应字典值
    internal readonly Node[] _buckets; 
    // A set of locks, each guarding a section of the table.
    //锁的数组
    internal readonly object[] _locks; 
    // The number of elements guarded by each lock.
    internal volatile int[] _countPerLock; 

    internal Tables(Node[] buckets, object[] locks, int[] countPerLock)
    {
        _buckets = buckets;
        _locks = locks;
        _countPerLock = countPerLock;
    }
}
/// <summary>
/// A node in a singly-linked list representing a particular hash table bucket.
/// 由Dictionary里的Entry改成Node,并且把next放到Node里
/// </summary>
private sealed class Node
{
    internal readonly TKey _key;
    internal TValue _value;
    internal volatile Node _next;
    internal readonly int _hashcode;

    internal Node(TKey key, TValue value, int hashcode, Node next)
    {
        _key = key;
        _value = value;
        _next = next;
        _hashcode = hashcode;
    }
}
private volatile Tables _tables; // Internal tables of the dictionary
private IEqualityComparer<TKey> _comparer; // Key equality comparer
// The maximum number of elements per lock before a resize operation is triggered
// 每个锁对应的元素最大个数,如果超过,要重新进行resize tables
private int _budget;    

  首先,内部类定义为私有且密封,这样就保证了无法从外部进行篡改,而且注意volatile关键字的使用,这确保了我们多线程操作的时候,最终都是去内存中读取对应地址的值和操作对应地址的值。

internal readonly object[] _locks;
internal volatile int[] _countPerLock;

以上两个类是为了高性能及并发锁所建立的对象,实际方法上锁时,使用如下语句

lock (tables._locks[lockNo])
Monitor.Enter(tables._locks[lockNo], ref lockTaken);

  以上两种调用方式是等价的,都会阻塞执行,直到获取到锁(对于Monitor我很多时候会尽可能使用TryEnter,毕竟不阻塞,不过这个类的实现一定要使用阻塞式的,这样程序逻辑才能继续往下走。更多关于Monitor我在 《C#异步编程(四)混合模式线程同步》里面有详细介绍)

这样,实现了颗粒化到每个单独的键值的锁,最大限度的保证了并发。

这里lockNo参数是通过GetBucketAndLockNo方法获取的,方法通过out变量返回值。

/// <summary>
/// Computes the bucket and lock number for a particular key.
///这里获取桶的索引和锁的索引,注意,锁的索引和桶未必是同一个值。 
/// </summary>
private static void GetBucketAndLockNo(int hashcode, out int bucketNo, out int lockNo, int bucketCount, int lockCount)
{
    bucketNo = (hashcode & 0x7fffffff) % bucketCount;
    lockNo = bucketNo % lockCount;
}

上面方法中

hashcode 是通过private IEqualityComparer<TKey> _comparer对象的GetHashCode方法通过key获取到的。

bucketCount是整个table的长度。

lockCount是现有的锁的数组

TryAdd方法

  我们从最简单的TryAdd方法开始介绍,这里ConcurrentDictionary类的封装非常合理,暴露出来的方法,很多是通过统一的内部方法进行执行,比如更新删除等操作等,都有类内部唯一的私有方法进行执行,然后通过向外暴漏各种参数不同的方法,来实现不同行为。

public bool TryAdd(TKey key, TValue value)
{
    if (key == null) ThrowKeyNullException();
    TValue dummy;
    return TryAddInternal(key, _comparer.GetHashCode(key), value, false, true, out dummy);
}

上面TryAddInternal的参数对应如下

/// <summary>
/// Shared internal implementation for inserts and updates.
/// If key exists, we always return false; and if updateIfExists == true we force update with value;
/// If key doesn‘t exist, we always add value and return true;
/// </summary>
private bool TryAddInternal(TKey key, int hashcode, TValue value, bool updateIfExists, bool acquireLock, out TValue resultingValue)

也就说说,updateIfExists为false,存在值的情况下,TryAdd不会更新原有值,而是直接返回false。我的多线程并发写库就是利用了这个特性,这个案例我会在本文最后介绍。现在我们来看TryAddInternal内部,废话不多说,上源码(大部分都注释过了,所以直接阅读即可)

//while包在外面,为了continue,如果发生了_tables私有变量在操作过程被其他线程修改的情况
while (true)
{
    int bucketNo, lockNo;
    //变量复制到方法本地变量  判断tables是否在操作过程中被其他线程修改。
    Tables tables = _tables;
    //提到过的获取桶的索引和锁的索引
    GetBucketAndLockNo(hashcode, out bucketNo, out lockNo, tables._buckets.Length, tables._locks.Length);
    //是否要扩大tables
    bool resizeDesired = false;
    //是否成功获取锁,成功的话会在final块中进行退出
    bool lockTaken = false;
    try
    {
        if (acquireLock)
            Monitor.Enter(tables._locks[lockNo], ref lockTaken);

        // If the table just got resized, we may not be holding the right lock, and must retry.
        // This should be a rare occurrence.
        if (tables != _tables)
        {
            continue;
        }

        // Try to find this key in the bucket
        Node prev = null;
        //这里如果找到对应地址为空,会直接跳出循环,说明对应的key没有添加锅
        //不为空的时候,会进行返回false(具体是否更新根据updateIfExists)(当然也存在会有相同_hashcode值的情况,所以还要对key进行判定,key不同,继续往后找,直到找到相同key)
        for (Node node = tables._buckets[bucketNo]; node != null; node = node._next)
        {
            Debug.Assert((prev == null && node == tables._buckets[bucketNo]) || prev._next == node);
            //对hashcode和key进行判定,确保找到的就是要更新的
            if (hashcode == node._hashcode && _comparer.Equals(node._key, key))
            {
                // The key was found in the dictionary. If updates are allowed, update the value for that key.
                // We need to create a new node for the update, in order to support TValue types that cannot
                // be written atomically, since lock-free reads may be happening concurrently.
                if (updateIfExists)
                {
                    if (s_isValueWriteAtomic)
                    {
                        node._value = value;
                    }
                    else
                    {
                        Node newNode = new Node(node._key, value, hashcode, node._next);
                        if (prev == null)
                        {
                            Volatile.Write(ref tables._buckets[bucketNo], newNode);
                        }
                        else
                        {
                            prev._next = newNode;
                        }
                    }
                    resultingValue = value;
                }
                else
                {
                    resultingValue = node._value;
                }
                return false;
            }
            prev = node;
        }

        // The key was not found in the bucket. Insert the key-value pair.
        Volatile.Write<Node>(ref tables._buckets[bucketNo], new Node(key, value, hashcode, tables._buckets[bucketNo]));
        checked
        {
            tables._countPerLock[lockNo]++;
        }

        //
        // If the number of elements guarded by this lock has exceeded the budget, resize the bucket table.
        // It is also possible that GrowTable will increase the budget but won‘t resize the bucket table.
        // That happens if the bucket table is found to be poorly utilized due to a bad hash function.
        //
        if (tables._countPerLock[lockNo] > _budget)
        {
            resizeDesired = true;
        }
    }
    finally
    {
        if (lockTaken)
            Monitor.Exit(tables._locks[lockNo]);
    }

    //
    // The fact that we got here means that we just performed an insertion. If necessary, we will grow the table.
    //
    // Concurrency notes:
    // - Notice that we are not holding any locks at when calling GrowTable. This is necessary to prevent deadlocks.
    // - As a result, it is possible that GrowTable will be called unnecessarily. But, GrowTable will obtain lock 0
    //   and then verify that the table we passed to it as the argument is still the current table.
    //
    if (resizeDesired)
    {
        GrowTable(tables);
    }

    resultingValue = value;
    return true;
}

 

ContainsKey和TryGetValue

ContainsKey和TryGetValue其实内部最后调用的都是私有TryGetValueInternal,这里ContainsKey调用TryGetValue。

ContainsKey方法

/// <summary>
/// Determines whether the ConcurrentDictionary{TKey, TValue} contains the specified key.
/// </summary>
/// <param name="key">The key to locate in the</param>
/// <returns>true if the ConcurrentDictionary{TKey, TValue} contains an element withthe specified key; otherwise, false.</returns>
public bool ContainsKey(TKey key)
{
    if (key == null) ThrowKeyNullException();
    TValue throwAwayValue;
    return TryGetValue(key, out throwAwayValue);
}

TryGetValue方法

/// <summary>
/// Attempts to get the value associated with the specified key from the ConcurrentDictionary{TKey,TValue}.
/// </summary>
/// <param name="key">The key of the value to get.</param>
/// <param name="value">When this method returns, <paramref name="value"/> contains the object from
/// the ConcurrentDictionary{TKey,TValue} with the specified key or the default value of
/// <returns>true if the key was found in the <see cref="ConcurrentDictionary{TKey,TValue}"/>;
/// otherwise, false.</returns>
public bool TryGetValue(TKey key, out TValue value)
{
    if (key == null) ThrowKeyNullException();
    return TryGetValueInternal(key, _comparer.GetHashCode(key), out value);
}

TryGetValueInternal方法

private bool TryGetValueInternal(TKey key, int hashcode, out TValue value)
{
    //用本地变量保存这个table的快照。
    // We must capture the _buckets field in a local variable. It is set to a new table on each table resize.
Tables tables = _tables;
//获取key对应的桶位置
    int bucketNo = GetBucket(hashcode, tables._buckets.Length);
    // We can get away w/out a lock here.
    // The Volatile.Read ensures that we have a copy of the reference to tables._buckets[bucketNo].
    // This protects us from reading fields (‘_hashcode‘, ‘_key‘, ‘_value‘ and ‘_next‘) of different instances.
Node n = Volatile.Read<Node>(ref tables._buckets[bucketNo]);
//如果key相符 ,赋值,不然继续寻找下一个。
    while (n != null)
    {
        if (hashcode == n._hashcode && _comparer.Equals(n._key, key))
        {
            value = n._value;
            return true;
        }
        n = n._next;
    }
    value = default(TValue);//没找到就赋默认值
    return false;
}

 

TryRemove

 TryRemove方法

public bool TryRemove(TKey key, out TValue value)
{
    if (key == null) ThrowKeyNullException();
    return TryRemoveInternal(key, out value, false, default(TValue));
}

这个方法会调用内部私用的TryRemoveInternal

/// <summary>
/// Removes the specified key from the dictionary if it exists and returns its associated value.
/// If matchValue flag is set, the key will be removed only if is associated with a particular
/// value.
/// </summary>
/// <param name="key">The key to search for and remove if it exists.</param>
/// <param name="value">The variable into which the removed value, if found, is stored.</param>
/// <param name="matchValue">Whether removal of the key is conditional on its value.</param>
/// <param name="oldValue">The conditional value to compare against if <paramref name="matchValue"/> is true</param>
/// <returns></returns>
private bool TryRemoveInternal(TKey key, out TValue value, bool matchValue, TValue oldValue)
{
    int hashcode = _comparer.GetHashCode(key);
    while (true)
    {
        Tables tables = _tables;
        int bucketNo, lockNo;
        //这里获取桶的索引和锁的索引,注意,锁的索引和桶未必是同一个值,具体算法看源码。
        GetBucketAndLockNo(hashcode, out bucketNo, out lockNo, tables._buckets.Length, tables._locks.Length);
        //这里锁住的只是对应这个index指向的锁,而不是所有锁。
        lock (tables._locks[lockNo])
        {
            //这里table可能被重新分配,所以这里再次获取,看得到的是不是同一个table
            // If the table just got resized, we may not be holding the right lock, and must retry.
            // This should be a rare occurrence.
            if (tables != _tables)
            {
                continue;
            }

            Node prev = null;
            //这里同一个桶,可能因为连地址,有很多值,所以要对比key
            for (Node curr = tables._buckets[bucketNo]; curr != null; curr = curr._next)
            {
                Debug.Assert((prev == null && curr == tables._buckets[bucketNo]) || prev._next == curr);
                //对比是不是要删除的的那个元素
                if (hashcode == curr._hashcode && _comparer.Equals(curr._key, key))
                {
                    if (matchValue)
                    {
                        bool valuesMatch = EqualityComparer<TValue>.Default.Equals(oldValue, curr._value);
                        if (!valuesMatch)
                        {
                            value = default(TValue);
                            return false;
                        }
                    }
                    //执行删除,判断有没有上一个节点。然后修改节点指针或地址。
                    if (prev == null)
                    {
                        Volatile.Write<Node>(ref tables._buckets[bucketNo], curr._next);
                    }
                    else
                    {
                        prev._next = curr._next;
                    }

                    value = curr._value;
                    tables._countPerLock[lockNo]--;
                    return true;
                }
                prev = curr;
            }
        }
        value = default(TValue);
        return false;
    }
}

 

我的使用实例

       之前做项目时候,有个奇怪的场景,就是打电话的时候回调接口保存通话记录,这里通过CallId来唯一识别每次通话,但是前端程序是通过websocket跟通话服务建立连接(通话服务是另外一个公司做的)。客户是呼叫中心,一般在网页端都是多个页面操作,所以会有多个websocket连接,这时候每次通话,每个页面都会回调接口端,保存相同的通话记录,并发是同一时间的。

       我们最早考虑使用消息队列来过滤重复的请求,但是我仔细考虑了下,发现使用ConcurrentDictionary方式的实现更简单,具体实现如下(我精简了下代码):

private  static ConcurrentDictionary<string,string> _strDic=new ConcurrentDictionary<string, string>();
public async Task<BaseResponse> AddUserByAccount(string callId)
{
    if ( _strDic.ContainsKey(callId))
    {
        return BaseResponse.GetBaseResponse(BusinessStatusType.Failed,"键值已存在");
    }
    //成功写入
    if (_strDic.TryAdd(callId,callId))
    {
        var  recordExist =await _userRepository.FirstOrDefaultAsync(c => c.CallId == callId);
        if (recordExist ==null)
        {
            Record record=new Record
            {
                CallId = callId,
                …………
                …………
                IsVerify=1
            };
            _userRepository.Insert(record);
            _userRepository.SaveChanges();
        } 
        return BaseResponse.GetBaseResponse(BusinessStatusType.OK);
    }
    //尝试竞争线程,写入失败
    return BaseResponse.GetBaseResponse(BusinessStatusType.Failed,"写入失败");
}

  这里如果进行同时的并发请求,最后请求都可以通过if ( _strDic.ContainsKey(callId))的判定,因为所有线程同时读取,都是未写入状态。但是多个线程会在TryAdd时有竞争,而且ConcurrentDictionary的实现保证了只有一个线程可以成功更新,其他的都返回失败。

 

以上是关于一起来看CORE源码 ConcurrentDictionary的主要内容,如果未能解决你的问题,请参考以下文章

Core源码List

Core源码List

Core源码依赖注入

Core源码依赖注入

.NET Core 3.0之深入源码理解Configuration

Nacos源码构建与总览(一起读源码)