利用朴素贝叶斯对名字进行性别预测

Posted mr0wang

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了利用朴素贝叶斯对名字进行性别预测相关的知识,希望对你有一定的参考价值。

完整代码

#-*-coding:utf-8-*-
import pandas as pd
import math
from collections import defaultdict

# load the data and preprocess the data

train = pd.read_csv("./data/train.txt")
test = pd.read_csv("./data/test.txt")
def loadData():
    # divide the data into two parts female and male
    names_male = train[train[‘gender‘] == 0]
    names_female = train[train[‘gender‘] == 1]

    totals = {
        ‘f‘:len(names_female),
        ‘m‘:len(names_male),
    }

    # use total to storage the oss
    return names_male,names_female,totals

# cal the posibilitied of the word in the name 

def calFreq(names_male,names_female,totals):
    # the word appereanced in female‘s name
    freq_list_f = defaultdict(int)
    for name in names_female :
        for char in name:
            freq_list_f[char] += 1.0 / totals[‘f‘]

        # the word appereanced in female‘s name
    freq_list_m = defaultdict(int)
    for name in names_male :
        for char in name:
            freq_list_f[char] += 1.0 / totals[‘m‘]

    return freq_list_m, freq_list_f     

# to avoid some word not disapperenced in the train data
def LaplaceSmooth(char, freq_list,total,alpha=1.0):
    count = freq_list[char * total]
    distinct_chars = len(freq_list)
    freq_smooth = (count+alpha)/(total+ distinct_chars * alpha)
    return freq_smooth

## ??

def GetLogProb(char, frequency_list, total):
    freq_smooth = LaplaceSmooth(char, frequency_list, total)
    return math.log(freq_smooth) - math.log(1 - freq_smooth)

def getBase(freq_list_m,freq_list_f,train):
    base_f = math.log(1 - train[‘gender‘].mean())
    base_f += sum([math.log(1 - freq_list_f[char]) for char in freq_list_f])
    base_m = math.log(train[‘gender‘].mean())
    base_m += sum([math.log(1 - freq_list_m[char]) for char in freq_list_m])
    bases = {‘f‘: base_f, ‘m‘: base_m}
    return bases

def calLogProb(name, bases,totals, freq_list_m,freq_list_f):
    logprob_m = bases[‘m‘]
    logprob_f = bases[‘f‘]
    for char in name:
        logprob_m += GetLogProb(char,freq_list_m,totals[‘m‘])
        logprob_f += GetLogProb(char,freq_list_f,totals[‘f‘])
    return {‘male‘:logprob_m,‘female‘:logprob_f}

def getGender(logProbs):
    return logProbs[‘male‘] > logProbs[‘female‘]

def getResult(bases, totals, freq_list_m, freq_list_f):
    result = []
    for name in test[‘name‘]:
        LogProbs = calLogProb(name, bases, totals, freq_list_m, freq_list_f)
        gender = getGender(LogProbs)
        result.append(int(gender))
    test[‘pred‘] = result
    print(test.head(20))
    return result
def main():
    names_male,names_female,totals = loadData()
    freq_list_m, freq_list_f = calFreq(names_male,names_female,totals)
    base = getBase(freq_list_m,freq_list_f,train)
    result = getResult(base, totals, freq_list_m, freq_list_f)


main()


以上是关于利用朴素贝叶斯对名字进行性别预测的主要内容,如果未能解决你的问题,请参考以下文章

机器学习:基于朴素贝叶斯对花瓣花萼的宽度和长度分类预测

Python之朴素贝叶斯对展会数据分类

实战:朴素贝叶斯对文档进行分类

尝试使用朴素贝叶斯对 3D 图像进行分类时出错

使用 LingPipe 使用朴素贝叶斯对数据进行分类

当我尝试使用朴素贝叶斯/Python进行预测时出现尺寸不匹配错误