网络优化

Posted czz0508

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了网络优化相关的知识,希望对你有一定的参考价值。

"""
常用的网络优化器有四种:SGD, Momentum, RMSprop, Adam
通过网络的运行结果可以知道SGD的收敛效果最差
""" import torch import torch.utils.data as Data import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt # 超参数 LR = 0.01 BATCH_SIZE = 32 EPOCH = 12 # 数据 x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1) y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size())) # 画出散点图 plt.scatter(x.numpy(), y.numpy()) plt.show() # 将数据放入torch数据库 torch_dataset = Data.TensorDataset(data_tensor=x, target_tensor=y) loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,) # 搭建网络 class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.hidden = torch.nn.Linear(1, 20) self.predict = torch.nn.Linear(20, 1) def forward(self, x): x = F.relu(self.hidden(x)) x = self.predict(x) return x # 定义四个网络放入一个列表中 net_SGD = Net() net_Momentum = Net() net_RMSprop = Net() net_Adam = Net() nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam] # 经过不同的优化函数优化并放入列表 opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR) opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8) opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9) opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99)) optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam] # 计算损失值 loss_func = torch.nn.MSELoss() # 用于记录四个网络各自的损失值 losses_his = [[], [], [], []] # 训练 for epoch in range(EPOCH): print(Epoch: , epoch) for step, (batch_x, batch_y) in enumerate(loader): # 之前的数据格式为tensor格式,不能用于训练网络,必须转换为variable b_x = Variable(batch_x) b_y = Variable(batch_y) for net, opt, l_his in zip(nets, optimizers, losses_his): output = net(b_x) # b_x经过各自的网络获得预测值 loss = loss_func(output, b_y) # 计算各自的损失值 opt.zero_grad() # 清除上一步的梯度值 loss.backward() # 反向传播,计算梯度值 opt.step() # 优化各个节点的参数值 l_his.append(loss.data[0]) # 记录损失值 labels = [SGD, Momentum, RMSprop, Adam] for i, l_his in enumerate(losses_his): plt.plot(l_his, label=labels[i]) plt.legend(loc=best) plt.xlabel(Steps) plt.ylabel(Loss) plt.ylim((0, 0.2)) plt.show()

技术分享图片

以上是关于网络优化的主要内容,如果未能解决你的问题,请参考以下文章

如何优化C ++代码的以下片段 - 卷中的零交叉

从JVM的角度看JAVA代码--代码优化

VSCode自定义代码片段14——Vue的axios网络请求封装

VSCode自定义代码片段14——Vue的axios网络请求封装

VSCode自定义代码片段14——Vue的axios网络请求封装

网络文件系统是不是预取? (或者:互联网文件系统是不是进行优化以减少往返)