PAT 甲级 1150 Travelling Salesman Problem
Posted zlrrrr
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了PAT 甲级 1150 Travelling Salesman Problem相关的知识,希望对你有一定的参考价值。
https://pintia.cn/problem-sets/994805342720868352/problems/1038430013544464384
The "travelling salesman problem" asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science. (Quoted from "https://en.wikipedia.org/wiki/Travelling_salesman_problem".)
In this problem, you are supposed to find, from a given list of cycles, the one that is the closest to the solution of a travelling salesman problem.
Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N (2<N≤200), the number of cities, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format City1 City2 Dist
, where the cities are numbered from 1 to N and the distance Dist
is positive and is no more than 100. The next line gives a positive integer K which is the number of paths, followed by K lines of paths, each in the format:
n C?1?? C?2?? ... C?n??
where n is the number of cities in the list, and C?i??‘s are the cities on a path.
Output Specification:
For each path, print in a line Path X: TotalDist (Description)
where X
is the index (starting from 1) of that path, TotalDist
its total distance (if this distance does not exist, output NA
instead), and Description
is one of the following:
TS simple cycle
if it is a simple cycle that visits every city;TS cycle
if it is a cycle that visits every city, but not a simple cycle;Not a TS cycle
if it is NOT a cycle that visits every city.
Finally print in a line Shortest Dist(X) = TotalDist
where X
is the index of the cycle that is the closest to the solution of a travelling salesman problem, and TotalDist
is its total distance. It is guaranteed that such a solution is unique.
Sample Input:
6 10
6 2 1
3 4 1
1 5 1
2 5 1
3 1 8
4 1 6
1 6 1
6 3 1
1 2 1
4 5 1
7
7 5 1 4 3 6 2 5
7 6 1 3 4 5 2 6
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 2 5 4 3 1
7 6 3 2 5 4 1 6
Sample Output:
Path 1: 11 (TS simple cycle)
Path 2: 13 (TS simple cycle)
Path 3: 10 (Not a TS cycle)
Path 4: 8 (TS cycle)
Path 5: 3 (Not a TS cycle)
Path 6: 13 (Not a TS cycle)
Path 7: NA (Not a TS cycle)
Shortest Dist(4) = 8
代码:
#include <bits/stdc++.h> using namespace std; #define inf 0x3f3f3f3f int N, M, K; int dis[220][220]; int vis[220], go[220]; int main() { scanf("%d%d", &N, &M); memset(dis, inf, sizeof(dis)); while(M --) { int st, en, cost; scanf("%d%d%d", &st, &en, &cost); if(cost < dis[st][en]) { dis[st][en] = cost; dis[en][st] = dis[st][en]; } } scanf("%d", &K); int temp = 0, ans = INT_MAX; for(int k = 1; k <= K; k ++) { int T; bool can = false; int cnt1 = 0, cnt2 = 0; memset(vis, 0, sizeof(vis)); bool flag = true; int sum = 0; scanf("%d", &T); for(int i = 1; i <= T; i ++) { scanf("%d", &go[i]); vis[go[i]] ++; if(i > 1) { if(dis[go[i]][go[i - 1]] != inf) { sum += dis[go[i]][go[i - 1]]; } else flag = false; } } printf("Path %d: ", k); if(!flag) printf("NA (Not a TS cycle) "); else { int iscycle = 0; for(int i = 1; i <= N; i ++) { if(vis[i] == 0) iscycle = 1; if(vis[i] == 1) cnt1 ++; if(vis[i] > 1) cnt2 ++; } if(iscycle == 1) printf("%d (Not a TS cycle) ", sum); else if(cnt2 == 1 && vis[go[1]] == 2) { can = true; printf("%d (TS simple cycle) ", sum); } else if(cnt2 >= 1 && vis[go[1]] >= 2) { can = true; printf("%d (TS cycle) ", sum); } else if(cnt2 >= 1 && vis[go[1]] < 2) printf("%d (Not a TS cycle) ", sum); else printf("%d (Not a TS cycle) ", sum); if(can && sum < ans) { ans = sum; temp = k; } } } printf("Shortest Dist(%d) = %d ", temp, ans); return 0; }
被图论支配的上午 暴躁 Be 主 在线编程
FH 下午去攀岩 然而我一会有牛客的比赛 哭咧咧
以上是关于PAT 甲级 1150 Travelling Salesman Problem的主要内容,如果未能解决你的问题,请参考以下文章
1150 Travelling Salesman Problem (25 分)
1150 Travelling Salesman Problem
1150 Travelling Salesman Problem (25 分)难度: 难 / 知识点: 图 模拟 未完成
PAT甲级——A1019 General Palindromic Number
PAT 甲级 1019 General Palindromic Number (进制转换,vector运用,一开始2个测试点没过)