LuoguP1226 模板快速幂||取余运算

Posted frankchen831x

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LuoguP1226 模板快速幂||取余运算相关的知识,希望对你有一定的参考价值。

题目链接:https://www.luogu.org/problemnew/show/P1226

第一次学快速幂,将别人对快速幂原理的解释简要概括一下:

  计算a^b时,直接乘的话计算次数为b,而快速幂则只需要log2(b)次,很实用。

  快速幂有很多种解释,以下介绍两种:

  一.

    我们可以将b转换为二进制来看,比如计算2^11,因为(11)10=(1011)2,所以211=21*8+0*4+1*2+1*1=21×8×21×2×21×1

    具体计算可以参考代码:

int quickPower(int a, int b)//是求a的b次方
{
    int ans = 1, base = a;//ans为答案,base为a^(2^n)
    while(b > 0)//b是一个变化的二进制数,如果还没有用完
    {
        if(b & 1)//&是位运算,b&1表示b在二进制下最后一位是不是1,如果是:
            ans *= base;//把ans乘上对应的a^(2^n)

        base *= base;//base自乘,由a^(2^n)变成a^(2^(n+1))
        b >>= 1;//位运算,b右移一位,如101变成10(把最右边的1移掉了),10010变成1001。现在b在二进制下最后一位是刚刚的倒数第二位。结合上面b & 1食用更佳
    }
    return ans;
}

  一般会将快速幂与取余运算结合在一起,例如本题。取余运算有一些很好的性质:

    (a+b) mod c = (a mod c + b mod c) mod c

    (a*b) mod c =((a mod c)*(b mod c)) mod c

  即在本题中求幂的过程中取余和求幂之后取余是一样的。另外,关于本题,有一个特殊情况,即k=1时,结果总为0,需要特判(最后一个测试点)。

  本题的AC代码如下:  

#include<cstdio>
using namespace std;

long b,p,k,res=1;

void QuickPower(long bb,long pp,long kk){
    long base=bb;
    base%=kk;
    while(pp){
        if(pp&1){
            res*=base;
            res%=kk;
        }
        base*=base;
        base%=kk;
        pp>>=1;
    }
}

int main(){
    scanf("%ld%ld%ld",&b,&p,&k);
    if(k!=1){
        QuickPower(b,p,k);
        printf("%ld^%ld mod %ld=%ld
",b,p,k,res);
    }    
    else
        printf("%ld^%ld mod %ld=0
",b,p,k);
    return 0;
}

  二.关于快速幂的另一种理解方式:

  对于a^b,若b为偶数,递归计算(a2)b/2;若b为奇数,则递归计算a*(a2)(b-1)/2

以上是关于LuoguP1226 模板快速幂||取余运算的主要内容,如果未能解决你的问题,请参考以下文章

[每日一题2020.06.15]P1226 模板快速幂取余运算

洛谷——P1226 取余运算||快速幂

Luogu P1226 取余运算||快速幂(数论,分治)

luogu P1226 取余运算||快速幂

洛谷 P1226 取余运算||快速幂 题解

Luogu P1226 取余运算||快速幂 (思路待补)