大整数类(已完善)

Posted lyjccsu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大整数类(已完善)相关的知识,希望对你有一定的参考价值。

在这里吐槽CSDN,代码保存在CSDN上面,复制下来变成一堆乱码,垃圾的要死。以后慢慢转博客园

偷偷告诉你们,python的的大数可以像c语言的int类型使用,打算学python了

#include<iostream>
#include<cstring>
#include<iomanip>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
using namespace std;
 
#define MAXN 9999
#define MAXSIZE 1000
#define DLEN 4
 
class BigNum
{
private:
    int a[MAXSIZE];    //可以控制大数的位数
    int len;       //大数长度
public:
    BigNum() { len = 1; memset(a, 0, sizeof(a)); }   //构造函数
    BigNum(const int);       //将一个int类型的变量转化为大数
    BigNum(const char*);     //将一个字符串类型的变量转化为大数
    BigNum(const BigNum &);  //拷贝构造函数
    BigNum &operator=(const BigNum &);   //重载赋值运算符,大数之间进行赋值运算
 
    friend istream& operator>>(istream&, BigNum&);   //重载输入运算符
    friend ostream& operator<<(ostream&, BigNum&);   //重载输出运算符
 
    BigNum operator+(const BigNum &) const;   //重载加法运算符,两个大数之间的相加运算
    BigNum operator-(const BigNum &) const;   //重载减法运算符,两个大数之间的相减运算
    BigNum operator*(const BigNum &) const;   //重载乘法运算符,两个大数之间的相乘运算
    BigNum operator/(const int   &) const;    //重载除法运算符,大数对一个整数进行相除运算
 
    BigNum operator^(const int  &) const;    //大数的n次方运算
    int    operator%(const int  &) const;    //大数对一个int类型的变量进行取模运算
    bool   operator>(const BigNum & T)const;   //大数和另一个大数的大小比较
    bool   operator>(const int & t)const;      //大数和一个int类型的变量的大小比较
 
    void print();       //输出大数
};
BigNum::BigNum(const int b)     //将一个int类型的变量转化为大数
{
    int c, d = b;
    len = 0;
    memset(a, 0, sizeof(a));
    while (d > MAXN)
    {
        c = d - (d / (MAXN + 1)) * (MAXN + 1);
        d = d / (MAXN + 1);
        a[len++] = c;
    }
    a[len++] = d;
}
BigNum::BigNum(const char*s)     //将一个字符串类型的变量转化为大数
{
    int t, k, index, l, i;
    memset(a, 0, sizeof(a));
    l = strlen(s);
    len = l / DLEN;
    if (l%DLEN)
        len++;
    index = 0;
    for (i = l - 1; i >= 0; i -= DLEN)
    {
        t = 0;
        k = i - DLEN + 1;
        if (k < 0)
            k = 0;
        for (int j = k; j <= i; j++)
            t = t * 10 + s[j] - 0;
        a[index++] = t;
    }
}
BigNum::BigNum(const BigNum & T) : len(T.len)  //拷贝构造函数
{
    int i;
    memset(a, 0, sizeof(a));
    for (i = 0; i < len; i++)
        a[i] = T.a[i];
}
BigNum & BigNum::operator=(const BigNum & n)   //重载赋值运算符,大数之间进行赋值运算
{
    int i;
    len = n.len;
    memset(a, 0, sizeof(a));
    for (i = 0; i < len; i++)
        a[i] = n.a[i];
    return *this;
}
istream& operator>>(istream & in, BigNum & b)   //重载输入运算符
{
    char ch[MAXSIZE * 4];
    int i = -1;
    in >> ch;
    int l = strlen(ch);
    int count = 0, sum = 0;
    for (i = l - 1; i >= 0;)
    {
        sum = 0;
        int t = 1;
        for (int j = 0; j < 4 && i >= 0; j++, i--, t *= 10)
        {
            sum += (ch[i] - 0)*t;
        }
        b.a[count] = sum;
        count++;
    }
    b.len = count++;
    return in;
 
}
/*ostream& operator<<(ostream& out,  BigNum& b)   //重载输出运算符
{
    int i;
    cout << b.a[b.len - 1];
    for(i = b.len - 2 ; i >= 0 ; i--)
    {
        cout.width(DLEN);
        cout.fill(‘0‘);
        cout << b.a[i];
    }
    return out;
}*/
 
BigNum BigNum::operator+(const BigNum & T) const   //两个大数之间的相加运算
{
    BigNum t(*this);
    int i, big;      //位数
    big = T.len > len ? T.len : len;
    for (i = 0; i < big; i++)
    {
        t.a[i] += T.a[i];
        if (t.a[i] > MAXN)
        {
            t.a[i + 1]++;
            t.a[i] -= MAXN + 1;
        }
    }
    if (t.a[big] != 0)
        t.len = big + 1;
    else
        t.len = big;
    return t;
}
BigNum BigNum::operator-(const BigNum & T) const   //两个大数之间的相减运算
{
    int i, j, big;
    bool flag;
    BigNum t1, t2;
    if (*this > T)
    {
        t1 = *this;
        t2 = T;
        flag = 0;
    }
    else
    {
        t1 = T;
        t2 = *this;
        flag = 1;
    }
    big = t1.len;
    for (i = 0; i < big; i++)
    {
        if (t1.a[i] < t2.a[i])
        {
            j = i + 1;
            while (t1.a[j] == 0)
                j++;
            t1.a[j--]--;
            while (j > i)
                t1.a[j--] += MAXN;
            t1.a[i] += MAXN + 1 - t2.a[i];
        }
        else
            t1.a[i] -= t2.a[i];
    }
    t1.len = big;
    while (t1.a[len - 1] == 0 && t1.len > 1)
    {
        t1.len--;
        big--;
    }
    if (flag)
        t1.a[big - 1] = 0 - t1.a[big - 1];
    return t1;
}
 
BigNum BigNum::operator*(const BigNum & T) const   //两个大数之间的相乘运算
{
    BigNum ret;
    int i, j, up;
    int temp, temp1;
    for (i = 0; i < len; i++)
    {
        up = 0;
        for (j = 0; j < T.len; j++)
        {
            temp = a[i] * T.a[j] + ret.a[i + j] + up;
            if (temp > MAXN)
            {
                temp1 = temp - temp / (MAXN + 1) * (MAXN + 1);
                up = temp / (MAXN + 1);
                ret.a[i + j] = temp1;
            }
            else
            {
                up = 0;
                ret.a[i + j] = temp;
            }
        }
        if (up != 0)
            ret.a[i + j] = up;
    }
    ret.len = i + j;
    while (ret.a[ret.len - 1] == 0 && ret.len > 1)
        ret.len--;
    return ret;
}
BigNum BigNum::operator/(const int & b) const   //大数对一个整数进行相除运算
{
    BigNum ret;
    int i, down = 0;
    for (i = len - 1; i >= 0; i--)
    {
        ret.a[i] = (a[i] + down * (MAXN + 1)) / b;
        down = a[i] + down * (MAXN + 1) - ret.a[i] * b;
    }
    ret.len = len;
    while (ret.a[ret.len - 1] == 0 && ret.len > 1)
        ret.len--;
    return ret;
}
int BigNum::operator %(const int & b) const    //大数对一个int类型的变量进行取模运算
{
    int i, d = 0;
    for (i = len - 1; i >= 0; i--)
    {
        d = ((d * (MAXN + 1)) % b + a[i]) % b;
    }
    return d;
}
BigNum BigNum::operator^(const int & n) const    //大数的n次方运算
{
    BigNum t, ret(1);
    int i;
    if (n < 0)
        exit(-1);
    if (n == 0)
        return 1;
    if (n == 1)
        return *this;
    int m = n;
    while (m > 1)
    {
        t = *this;
        for (i = 1; i << 1 <= m; i <<= 1)
        {
            t = t * t;
        }
        m -= i;
        ret = ret * t;
        if (m == 1)
            ret = ret * (*this);
    }
    return ret;
}
bool BigNum::operator>(const BigNum & T) const   //大数和另一个大数的大小比较
{
    int ln;
    if (len > T.len)
        return true;
    else if (len == T.len)
    {
        ln = len - 1;
        while (a[ln] == T.a[ln] && ln >= 0)
            ln--;
        if (ln >= 0 && a[ln] > T.a[ln])
            return true;
        else
            return false;
    }
    else
        return false;
}
bool BigNum::operator >(const int & t) const    //大数和一个int类型的变量的大小比较
{
    BigNum b(t);
    return *this > b;
}
 
void BigNum::print()    //输出大数
{
    int i;
    //cout << a[len - 1];
    printf("%d", a[len - 1]);
    for (i = len - 2; i >= 0; i--)
    {
        /*cout.width(DLEN);
        cout.fill(‘0‘);
        cout << a[i];*/
        printf("%04d", a[i]);
    }
    //cout << endl;
    printf("
");
}
int main(void)
{
    char s[10005];
    cin >> s;
 
    BigNum n = s;
    n = n * 2;
    n = n + 1;
 
 
    BigNum t = 3;
 
    for (int ans = 0; ans < 100000000; ans++)
    {
        if (n > (t^ans))
        {
            continue;
        }
 
        cout << ans << endl;
        break;
    }
 
    return 0;
}

 

以上是关于大整数类(已完善)的主要内容,如果未能解决你的问题,请参考以下文章

常用Javascript代码片段集锦

Java面试题大汇总(附答案)

如何从片段内的列表视图打开链接网址?

6大设计原则之开闭原则

蓝桥杯真题东奥大抽奖

紫书 -- 大整数类