JZOJ 3914. 人品问题

Posted zjzjzj

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了JZOJ 3914. 人品问题相关的知识,希望对你有一定的参考价值。

题目

Description

网上出现了一种高科技产品——人品测试器。只要你把你的真实姓名输入进去,系统将自动输出你的人品指数。yzx不相信自己的人品为0。经过了许多研究后,yzx得出了一个更为科学的人品计算方法。这种方法的理论依据是一个非常重要的结论:人品具有遗传性。因此,一个人的人品完全由他的祖先决定。yzx提出的人品计算方法相当简单,只需要将测试对象的k个祖先的人品指数(可能为负数)加起来即可。选择哪k个祖先可以由测试者自己决定,但必须要满足这个要求:如果除自己的父母之外的某个祖先被选了,那么他的下一代必需要选(不允许跳过某一代选择更远的祖先,否则将失去遗传的意义)。
非常不幸的是,yzx测试了若干次,他的人品值仍然不能为一个正数。现在yzx需要你帮助他找到选择祖先的最优方案,使得他的人品值最大。
 

Input

第一行是两个用空格隔开的正整数n和k,其中n代表yzx已知的家谱中共有多少人(包括yzx本身在内),k的意义参见问题描述。
第二行有n-1个用空格隔开的整数(可能为负),这些数的绝对值在2^15以内。其中,第i个数表示编号为i+1的人的人品值。我们规定,编号为1的人是yzx。
接下来n行每行有两个用空格隔开的数,其中第i行的两个数分别表示第i个人的父亲和母亲的编号。如果某个人的父亲或母亲不在这个家谱内,则在表示他的父亲或母亲的编号时用0代替。
除yzx以外的所有人都是yzx的祖先,他们都会作为父亲或母亲被描述到。每个人都不可能同时作为多个人的父亲或者是母亲。

Output

一个整数,表示yzx能够得到的最大人品值。
 

Sample Input

6 3
-2 3 -2 3 -1
2 3
4 5
0 6
0 0
0 0
0 0

Sample Output

4
样例说明下图显示了输入样例所描述的家谱图。括号里的数表示的是该人的人品值。
 
4(-2)  5(3)  6(-1)
      /     /
     /     /
   2(-2)   3(3)
         /
        /
       1 <---yzx
 
显然,选择祖先2、3、5能使yzx的人品值达到最大。这个最大值为4,表示yzx能够得到的最大人品值。
 

Data Constraint

50%的数据,n<=10。
100%的数据,n<=100。

分析

  • 暴力分还是很足的 50
  • 正解是一个树形DP
  • 对于一个根节点来说,可能有多种分配情况需要一个枚举就好了
  • 加一个记忆化加快时间

 

 

 

 

   代码

 1 #include<iostream>
 2 using namespace std;
 3 struct sb
 4 {
 5     int val,f,m;
 6 }a[1001];
 7 int v[1001][1001],f[1001][1001];
 8 int dp(int x,int sum)
 9 {
10     if (v[x][sum]) return f[x][sum];
11     if (!sum) return f[x][sum]=0;
12     if (!x) return f[x][sum]=-1e9;
13     if (sum==1) return f[x][sum]=a[x].val;
14     int ans=-1e9;
15     for (int i=0;i<sum;i++)
16         ans=max(ans,a[x].val+dp(a[x].f,i)+dp(a[x].m,sum-i-1));
17     v[x][sum]=1;
18     f[x][sum]=ans;
19     return ans;
20 }
21 int main ()
22 {
23     int n,k;
24     cin>>n>>k;
25     for (int i=2;i<=n;i++)
26        cin>>a[i].val;
27     for (int i=1;i<=n;i++)
28        cin>>a[i].f>>a[i].m;
29     cout<<dp(1,k+1);
30 }

 

 

以上是关于JZOJ 3914. 人品问题的主要内容,如果未能解决你的问题,请参考以下文章

人品问题

ITP3914 Programming

JZYZOJ 1360 [usaco2011feb]人品问题 DP 树状数组 离散化

洛谷——P3914 染色计数

洛谷 P3914 染色计数

JZOJ 数数