CF #535 (Div. 3) E2 Array and Segments (Hard version) 利用线段树进行区间转移
Posted ckxkexing
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CF #535 (Div. 3) E2 Array and Segments (Hard version) 利用线段树进行区间转移相关的知识,希望对你有一定的参考价值。
题意:
有m个区间,n个a[ i ] , 选择若干个区间,使得整个数组中的最大值和最小值的差值最小。n<=1e5,m<=300;
思路:
可以知道每个i,如果一个区间包含这个点,就让这个区间发挥作用。枚举每个i,找到最大值即可。
当然这个复杂度不对,我们可以通过线段树保存数组的最大值和最小值,每次区间在左端点发挥作用,在右端点去掉作用。
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << " "; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; //typedef __int128 bll; typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; typedef pair<int,pii> p3; typedef pair<ll,int>pli; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl ‘ ‘ //#define R register #define OKC ios::sync_with_stdio(false);cin.tie(0) #define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行 #define REP(i , j , k) for(int i = j ; i < k ; ++i) #define max3(a,b,c) max(max(a,b), c); #define min3(a,b,c) min(min(a,b), c); //priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 //const int mod = 1e9+7; const double esp = 1e-8; const double PI=acos(-1.0); const double PHI=0.61803399; //黄金分割点 const double tPHI=0.38196601; template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<‘0‘||ch>‘9‘) f|=(ch==‘-‘),ch=getchar(); while (ch>=‘0‘&&ch<=‘9‘) x=x*10+ch-‘0‘,ch=getchar(); return x=f?-x:x; } /*-----------------------showtime---------------------*/ const int maxn = 1e5+9; int mx[maxn<<2],mn[maxn<<2],dif[maxn<<2]; int lazy[maxn<<2]; int a[maxn]; pii e[maxn]; void pushup(int rt){ mx[rt] = max(mx[rt<<1], mx[rt<<1|1]); mn[rt] = min(mn[rt<<1], mn[rt<<1|1]); dif[rt] = mx[rt] - mn[rt]; } void build(int l,int r,int rt){ if(l == r){ mx[rt] = mn[rt] = a[l]; dif[rt] = mx[rt] - mn[rt]; return; } int mid = (l + r) >> 1; build(l, mid, rt<<1); build(mid+1, r, rt<<1|1); pushup(rt); } vector<int>tmp,res; void pushdown(int rt){ if(lazy[rt] == 0) return; lazy[rt<<1] += lazy[rt]; lazy[rt<<1|1] += lazy[rt]; mn[rt<<1] += lazy[rt]; mn[rt<<1|1] += lazy[rt]; mx[rt<<1] += lazy[rt]; mx[rt<<1|1] += lazy[rt]; lazy[rt] = 0; return; } void update(int L, int R ,int c,int l,int r,int rt){ if(l>=L && r<=R){ mx[rt] += c; mn[rt] += c; lazy[rt] += c; return; } pushdown(rt); int mid = (l + r) >> 1; if(mid >= L)update(L,R,c,l,mid,rt<<1); if(mid < R)update(L,R,c,mid+1,r,rt<<1|1); pushup(rt); } int main(){ int n,m; scanf("%d%d", &n, &m); for(int i=1; i<=n; i++) scanf("%d", &a[i]); build(1,n,1); for(int i=1; i<=m; i++) scanf("%d%d", &e[i].fi, &e[i].se); int ans = 0; for(int i=1; i<=n; i++){ tmp.clear(); for(int j=1; j<=m; j++){ if(e[j].fi == i){ update(e[j].fi,e[j].se,-1,1,n,1); } else if(e[j].se == i-1){ update(e[j].fi,e[j].se,1,1,n,1); } if(e[j].fi <=i && e[j].se >= i) tmp.pb(j); } int q = dif[1]; if(ans < q){ ans = q; // res.clear(); res = tmp; } } printf("%d ", ans); printf("%d ", (int)res.size()); for(int i=0; i<(int)res.size(); i++){ printf("%d ", res[i]); } puts(""); return 0; }
以上是关于CF #535 (Div. 3) E2 Array and Segments (Hard version) 利用线段树进行区间转移的主要内容,如果未能解决你的问题,请参考以下文章
Codeforces Round #535 (Div. 3) 题解
Codeforces Round #535 (Div. 3)小上分记
Codeforces Round #535 E2-Array and Segments (Hard version)