优化之外罚函数法

Posted zhuhongzhous

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了优化之外罚函数法相关的知识,希望对你有一定的参考价值。

罚函数法的基本思想是借助罚函数把约束问题转化为无约束问题,然后用无约束最优方法来求解。

构造罚函数:在可行点,辅助函数的值等于原来的目标函数值;在不可行点,辅助函数值等于原来的目标函数值加上一个很大的正数。可写成形如下式:

技术分享图片

目标函数:

技术分享图片

约束条件:

 技术分享图片

其相关代码如下:

clc
syms x1 x2 e;                                           % e为罚因子
m(1)=1;c=10;a(1)=0;b(1)=0;                               % c为递增系数 赋初值
f=x1^2+x2^2+e*(1-x1)^2;                                 % 构造罚函数
f0(1)=0;

%求偏导、海森阵
fx1=diff(f,‘x1‘);
fx2=diff(f,‘x2‘);
fx1x1=diff(fx1,‘x1‘);
fx1x2=diff(fx1,‘x2‘);
fx2x1=diff(fx2,‘x1‘);
fx2x2=diff(fx2,‘x2‘);
for k=1:100                                              %外点法e迭代循环
    x1=a(k);x2=b(k);e=m(k);
    for n=1:100                                          %牛顿法求最优值
        f1=subs(fx1);                                    %求梯度值和海森矩阵
        f2=subs(fx2);
        f11=subs(fx1x1);
        f12=subs(fx1x2);
        f21=subs(fx2x1);
        f22=subs(fx2x2);
        if(double(sqrt(f1^2+f2^2))<=0.000001)              %最优值收敛条件
            a(k+1)=double(x1);b(k+1)=double(x2);f0(k+1)=double(subs(f));
            break;
        else
            X=[x1 x2]‘-inv([f11 f12;f21 f22])*[f1 f2]‘;
            x1=X(1,1);x2=X(2,1);
        end
    end
    if(double(sqrt((a(k+1)-a(k))^2+(b(k+1)-b(k))^2))<=0.000001)&&(double(abs((f0(k+1)-f0(k))/f0(k)))<=0.000001)   %迭代收敛条件
      disp(‘最优坐标 x1:‘),disp(a(k+1))%输出最优点坐标,迭代次数,最优值
      disp(‘最优坐标 x2:‘),disp(b(k+1))  
      disp(‘迭代次数‘),disp(k)
      disp(‘最优值‘),disp(f0(k+1))
      break;
    else
      m(k+1)=c*m(k);
    end
end

 运行结果如下:

 技术分享图片

 

以上是关于优化之外罚函数法的主要内容,如果未能解决你的问题,请参考以下文章

优化理论10----约束优化的罚函数法外点法(Penalty method)内点法(**Barrier Methods**)混合惩罚函数法

复习三罚函数法

机器学习之数学03 有约束的非线性优化问题——拉格朗日乘子法KKT条件投影法

约束最优化方法 (一) 最优性条件

深度学习的优化算法

如何优化C ++代码的以下片段 - 卷中的零交叉