协程相关

Posted wangpanger

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了协程相关相关的知识,希望对你有一定的参考价值。

一 协程介绍

  协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。、

  需要强调的是:

#1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
#2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)

  对比操作系统控制线程的切换,用户在单线程内控制协程的切换

  优点如下:

#1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
#2. 单线程内就可以实现并发的效果,最大限度地利用cpu

  缺点如下:

#1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
#2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

  总结协程特点:

  1. 必须在只有一个单线程里实现并发
  2. 修改共享数据不需加锁
  3. 用户程序里自己保存多个控制流的上下文栈
  4. 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))

二 Greenlet

  如果我们在单个线程内有20个任务,要想实现在多个任务之间切换,使用yield生成器的方式过于麻烦(需要先得到初始化一次的生成器,然后再调用send。。。非常麻烦),而使用greenlet模块可以非常简单地实现这20个任务直接的切换

#安装
pip3 install greenlet
  #真正的协程模块就是使用greenlet完成的切换

from greenlet import greenlet

def eat(name):
    print(%s eat 1 %name)  #2
    g2.switch(taibai)   #3
    print(%s eat 2 %name) #6
    g2.switch() #7
def play(name):
    print(%s play 1 %name) #4
    g1.switch()      #5
    print(%s play 2 %name) #8

g1=greenlet(eat)
g2=greenlet(play)

g1.switch(taibai)#可以在第一次switch时传入参数,以后都不需要  1

单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度

技术分享图片
#顺序执行
import time
def f1():
    res=1
    for i in range(100000000):
        res+=i

def f2():
    res=1
    for i in range(100000000):
        res*=i

start=time.time()
f1()
f2()
stop=time.time()
print(run time is %s %(stop-start)) #10.985628366470337

#切换
from greenlet import greenlet
import time
def f1():
    res=1
    for i in range(100000000):
        res+=i
        g2.switch()

def f2():
    res=1
    for i in range(100000000):
        res*=i
        g1.switch()

start=time.time()
g1=greenlet(f1)
g2=greenlet(f2)
g1.switch()
stop=time.time()
print(run time is %s %(stop-start)) # 52.763017892837524
效率对比

greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题。

  技术分享图片

  上面这个图,是协程真正的意义,虽然没有规避固有的I/O时间,但是我们使用这个时间来做别的事情了,一般在工作中我们都是进程+线程+协程的方式来实现并发,以达到最好的并发效果,如果是4核的cpu,一般起5个进程,每个进程中20个线程(5倍cpu数量),每个线程可以起500个协程,大规模爬取页面的时候,等待网络延迟的时间的时候,我们就可以用协程去实现并发。 并发数量 = 5 * 20 * 500 = 50000个并发,这是一般一个4cpu的机器最大的并发数。nginx在负载均衡的时候最大承载量就是5w个

  单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2。。。。如此,才能提高效率,这就用到了Gevent模块。

三 Gevent介绍

#安装
pip3 install gevent

  Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

#用法
g1=gevent.spawn(func,1,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的,spawn是异步提交任务

g2=gevent.spawn(func2)

g1.join() #等待g1结束

g2.join() #等待g2结束  有人测试的时候会发现,不写第二个join也能执行g2,是的,协程帮你切换执行了,但是你会发现,如果g2里面的任务执行的时间长,但是不写join的话,就不会执行完等到g2剩下的任务了


#或者上述两步合作一步:gevent.joinall([g1,g2])

g1.value#拿到func1的返回值
遇到IO阻塞时会自动切换任务
技术分享图片
import gevent
def eat(name):
    print(%s eat 1 %name)
    gevent.sleep(2)
    print(%s eat 2 %name)

def play(name):
    print(%s play 1 %name)
    gevent.sleep(1)
    print(%s play 2 %name)


g1=gevent.spawn(eat,egon)
g2=gevent.spawn(play,name=egon)
g1.join()
g2.join()
#或者gevent.joinall([g1,g2])
print()
遇到I/O切换

上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,

  而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了

  from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前

  或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头

from gevent import monkey;monkey.patch_all() #必须写在最上面,这句话后面的所有阻塞全部能够识别了

import gevent  #直接导入即可
import time
def eat():
    #print()  
    print(eat food 1)
    time.sleep(2)  #加上mokey就能够识别到time模块的sleep了
    print(eat food 2)

def play():
    print(play 1)
    time.sleep(1)  #来回切换,直到一个I/O的时间结束,这里都是我们个gevent做得,不再是控制不了的操作系统了。
    print(play 2)

g1=gevent.spawn(eat)
g2=gevent.spawn(play_phone)
gevent.joinall([g1,g2])
print()

我们可以用threading.current_thread().getName()来查看每个g1和g2,查看的结果为DummyThread-n,即假线程,虚拟线程,其实都在一个线程里面

  进程线程的任务切换是由操作系统自行切换的,你自己不能控制

  协程是通过自己的程序(代码)来进行切换的,自己能够控制,只有遇到协程模块能够识别的IO操作的时候,程序才会进行任务切换,实现并发效果,如果所有程序都没有IO操作,那么就基本属于串行执行了。

四 Gevent之同步与异步

技术分享图片
from gevent import spawn,joinall,monkey;monkey.patch_all()

import time
def task(pid):
    """
    Some non-deterministic task
    """
    time.sleep(0.5)
    print(Task %s done % pid)


def synchronous():
    for i in range(10):
        task(i)

def asynchronous():
    g_l=[spawn(task,i) for i in range(10)]
    joinall(g_l)

if __name__ == __main__:
    print(Synchronous:)
    synchronous()

    print(Asynchronous:)
    asynchronous()
#上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。 初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,后者阻塞当前流程,并执行所有给定的greenlet。执行流程只会在 所有greenlet执行完后才会继续向下走。
协程:同步异步对比

五 Gevent之应用举例一

技术分享图片
from gevent import monkey;monkey.patch_all()
import gevent
import requests
import time

def get_page(url):
    print(GET: %s %url)
    response=requests.get(url)
    if response.status_code == 200:
        print(%d bytes received from %s %(len(response.text),url))


start_time=time.time()
gevent.joinall([
    gevent.spawn(get_page,https://www.python.org/),
    gevent.spawn(get_page,https://www.yahoo.com/),
    gevent.spawn(get_page,https://github.com/),
])
stop_time=time.time()
print(run time is %s %(stop_time-start_time))
协程:爬虫

将上面的程序最后加上一段串行的代码看看效率:如果你的程序不需要太高的效率,那就不用什么并发啊协程啊之类的东西。

技术分享图片
print(--------------------------------)
s = time.time()
requests.get(https://www.python.org/)
requests.get(https://www.yahoo.com/)
requests.get(https://github.com/)
t = time.time()
print(串行时间>>‘,t-s)
技术分享图片

六 Gevent之应用举例二

  通过gevent实现单线程下的socket并发(from gevent import monkey;monkey.patch_all()一定要放到导入socket模块之前,否则gevent无法识别socket的阻塞)

  技术分享图片

  一个网络请求里面经过多个时间延迟time

技术分享图片
from gevent import monkey;monkey.patch_all()
from socket import *
import gevent

#如果不想用money.patch_all()打补丁,可以用gevent自带的socket
# from gevent import socket
# s=socket.socket()

def server(server_ip,port):
    s=socket(AF_INET,SOCK_STREAM)
    s.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
    s.bind((server_ip,port))
    s.listen(5)
    while True:
        conn,addr=s.accept()
        gevent.spawn(talk,conn,addr)

def talk(conn,addr):
    try:
        while True:
            res=conn.recv(1024)
            print(client %s:%s msg: %s %(addr[0],addr[1],res))
            conn.send(res.upper())
    except Exception as e:
        print(e)
    finally:
        conn.close()

if __name__ == __main__:
    server(127.0.0.1,8080)

服务端
服务端
技术分享图片
from socket import *

client=socket(AF_INET,SOCK_STREAM)
client.connect((127.0.0.1,8080))


while True:
    msg=input(>>: ).strip()
    if not msg:continue

    client.send(msg.encode(utf-8))
    msg=client.recv(1024)
客户端

 

技术分享图片
from threading import Thread
from socket import *
import threading

def client(server_ip,port):
    c=socket(AF_INET,SOCK_STREAM) #套接字对象一定要加到函数内,即局部名称空间内,放在函数外则被所有线程共享,则大家公用一个套接字对象,那么客户端端口永远一样了
    c.connect((server_ip,port))

    count=0
    while True:
        c.send((%s say hello %s %(threading.current_thread().getName(),count)).encode(utf-8))
        msg=c.recv(1024)
        print(msg.decode(utf-8))
        count+=1
if __name__ == __main__:
    for i in range(500):
        t=Thread(target=client,args=(127.0.0.1,8080))
        t.start()
多线程并发多个客户端,去请求上面的服务端是没问题的

以上是关于协程相关的主要内容,如果未能解决你的问题,请参考以下文章

进程和线程和协程之间的关系

Kotlin runBlocking 与 laucner标签 by协程

Python3 协程相关

协程相关

为啥 LiveData 没有从协程更新?

AJAX相关JS代码片段和部分浏览器模型