2018(容斥定理 HDU6286)
Posted chr1stopher
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2018(容斥定理 HDU6286)相关的知识,希望对你有一定的参考价值。
2018
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 507 Accepted Submission(s): 263
Problem Description
Given a,b,c,d, find out the number of pairs of integers (x,y) where a≤x≤b,c≤y≤d and x?y is a multiple of 2018.
Input
The input consists of several test cases and is terminated by end-of-file.
Each test case contains four integers a,b,c,d.
Output
For each test case, print an integer which denotes the result.
## Constraint
* 1≤a≤b≤109,1≤c≤d≤109
* The number of tests cases does not exceed 104.
Sample Input
1 2 1 2018
1 2018 1 2018
1 1000000000 1 1000000000
Sample Output
3
6051
1485883320325200
思路:
1.若x是偶数:1)若x是1009的倍数,则y可为[c,d]中任意数; 2)若x不是1009的倍数,则y必定为[c,d]中1009的倍数
2.若x是奇数:1)若x是1009的倍数,则y必定为[c,d]中2的倍数; 2)若x不是1009的倍数,则y必定为[c,d]中2018的倍数
AC代码:
#include<stdio.h> #include<iostream> #include<string.h> #include<algorithm> #include<math.h> #include<string> #include<queue> #include<utility> #define ll long long using namespace std; const int maxn = 1e5+7; int main(int argc, char const *argv[]) { ll a,b,c,d; while(~scanf("%lld %lld %lld %lld",&a,&b,&c,&d)) { ll s1 = b-a+1; ll s2 = d-c+1; ll s1_odd = b/2-(a-1)/2; ll s1_1009 = b/1009-(a-1)/1009; ll x1=(b/2018-(a-1)/2018)*s2; ll x2=(s1_odd-(b/2018-(a-1)/2018))*(d/1009-(c-1)/1009); ll x3=(s1_1009-(b/2018-(a-1)/2018))*(d/2-(c-1)/2); ll x4=((s1-s1_odd)-(s1_1009-(b/2018-(a-1)/2018)))*(d/2018-(c-1)/2018); printf("%lld ",x1+x2+x3+x4); } return 0; }
以上是关于2018(容斥定理 HDU6286)的主要内容,如果未能解决你的问题,请参考以下文章
HDU5768Lucky7(中国剩余定理+容斥定理)(区间个数统计)