[线段树] Jzoj P4231 寻找神格

Posted comfortable

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[线段树] Jzoj P4231 寻找神格相关的知识,希望对你有一定的参考价值。

Description

 淬炼完神体,王仙女被传送到了遥远处一座没有神雷的浮岛上,发现浮岛上除了一扇门以外什么都没有。他来到门前,发现上面写着这样一段话:
一个神出了拥有强大的神体外,还需要一枚神格。然而,想要获得神格没那么简单,除了有实力外还需要有运气。曾经有一个人叫金(jin)字(zi)塔(da),他的神体很强,很壮,可是他根本没有运气,所以最后神格拒绝了他。打开这扇门,你将会进入一个神格创造的空间,在那里,神格将会问你一些问题来测试你解决问题的能力,当然,它的问题将会很难,在你答不出来的时候你可以选择随便猜一个答案,以此来展现你的运气。
王仙女二话不说打开了那扇门,一阵眩晕过后,他来到了一个灰蒙蒙的空间。一个苍老的声音在四周响起:小娃娃,我是一枚存在亿万年的神格,我的上一任主人已经死去百万余年了,我也已经在这里等待了百万年了。能否成为我的主人,让我重现百万年前的风采,就看你的能力和运气了。再问问题之前,我要先跟你讲一件事。成为一个神后,最大的责任便是保护神界的人民,他们都出生在神界,但并不都具有神的实力。当然,神界人族的内部也有战争,他们一共分为N个部落,每两个部落之间都有可能发生战争。为了不然神界人族因为战争而损失惨重,神界的诸神将这些部落编号为1~N,当这些部落的人数差距太大时,诸神便会降临,将一些部落的人带走,并放一些在别的部落中。而衡量所有部落人数差距的数值便是方差。接下来,我会告诉你一些部落的人数增加或减少的信息,并会不时的询问你编号为L~R的部落的总人数或是他们部落人数的方差。
 

Input

第一行包含两个正整数N,Q,表示部落数和神格的信息数与询问数总和。
第二行包含N个数,第i个数a_i表示编号为i的部落最初的人数。
接下来Q行,第一个数为t。
当t=0时,这一行还有两个数a,b,表示编号为a的部落增加了b个人(如果b<0则表示减少了|b|个人)。
当t=1时,这一行还有三个数a,b,c,表示编号为a~b的部落增加了c个人(如果c<0则表示减少了|c|个人)。
当t=2时,这一行还有两个数a,b,表示神格询问了编号为a~b的部落现在的总人数。
当t=3时,这一行还有两个数a,b,表示神格询问了编号为a~b的部落人数的方差。

Output

对于每个t=2,输出一行,包含一个整数,表示总人数。
对于每个t=3,输出一行,包含一个实数,表示方差,结果保留三位小数。
 

Sample Input

5 5
1 2 3 4 5
0 3 3
1 2 3 6
2 3 5
0 1 2
3 1 5

Sample Output

21
10.640
 

Data Constraint

对于30%的数据,N≤1000,Q≤1000
对于100%的数据,1≤N≤100000,1≤Q≤100000,|a_i |≤1000,数据保证在任何时候|所有部落总人数|≤〖10〗^9
注:由于神界人族的人数统计是用实际人数减去一个标准值,所以人数可能会出现负数
 

Hint

方差的定义:
求N个数的方差,设这N个数的平均数为ave,第i个数为x_i
方差=1/n[(x_1-ave)^2+(x_2-ave)^2+?+(x_(n-1)-ave)^2+(x_n-ave)^2]

 

题解

  • 题目大意:给了n个数,要求区间修改,区间求和,区间方差
  • 前两个显然,直接线段树就可以做了,考虑怎么就区间方差
  • 方差=1/n[(x_1-ave)^2+(x_2-ave)^2+?+(x_(n-1)-ave)^2+(x_n-ave)^2]
  • =1/n[x_1^2+x_2^2+x_3^2+...+x_n^2+n*ave^2-2*ave*(x_1+x_2+x_3+...+x_n)]
  • 化简到这里可以发现,ave=1/n(x_1+x_2+x_3+...x_n)
  • 那么这样的话,我们只用满足区间和,和区间平方和,这样的话我们就可以得到ans
  • 这题TM的精度是真的恶心!!

代码

 1 #include <cstdio>
 2 #define ll long long
 3 using namespace std;
 4 struct edge { ll k,l,r; }tree[10000010];
 5 ll n,Q,t,a,b,c,ans1,ans2;
 6 double ans;
 7 void down(ll d,ll l,ll r)
 8 {
 9     ll mid=l+r>>1;
10      tree[d*2].k+=tree[d].r*tree[d].r*(mid-l+1)+tree[d*2].l*2*tree[d].r,tree[d*2+1].k+=tree[d].r*tree[d].r*(r-mid)+tree[d*2+1].l*2*tree[d].r;
11     tree[d*2].l+=(mid-l+1)*tree[d].r,tree[d*2+1].l+=(r-mid)*tree[d].r,tree[d*2].r+=tree[d].r,tree[d*2+1].r+=tree[d].r,tree[d].r=0;
12 }
13 void insert(ll d,ll l,ll r,ll L,ll R,ll w)
14 {
15     if (l==L&&r==R) tree[d].k+=(R-L+1)*w*w+2*tree[d].l*w,tree[d].l+=w*(R-L+1),tree[d].r+=w;
16     else 
17     {
18         ll mid=l+r>>1;down(d,l,r);
19         if (mid<L) insert(d*2+1,mid+1,r,L,R,w); else if (mid>=R) insert(d*2,l,mid,L,R,w);
20         else insert(d*2,l,mid,L,mid,w),insert(d*2+1,mid+1,r,mid+1,R,w);
21         tree[d].k=tree[d*2].k+tree[d*2+1].k,tree[d].l=tree[d*2].l+tree[d*2+1].l;
22     }
23 }
24 void Query(ll d,ll l,ll r,ll L,ll R)
25 {
26     if (l==L&&r==R) ans1+=tree[d].l,ans2+=tree[d].k;
27     else 
28     {
29         ll mid=l+r>>1;down(d,l,r);
30         if (mid<L) Query(d*2+1,mid+1,r,L,R); else if (mid>=R) Query(d*2,l,mid,L,R);
31         else Query(d*2,l,mid,L,mid),Query(d*2+1,mid+1,r,mid+1,R);
32         tree[d].l=tree[d*2].l+tree[d*2+1].l,tree[d].k=tree[d*2].k+tree[d*2+1].k;
33     }
34 }
35 int main()
36 {
37     scanf("%lld%lld",&n,&Q);
38     for (ll i=1,x;i<=n;i++) scanf("%lld",&x),insert(1,1,n,i,i,x);
39     while (Q--)
40     {
41         scanf("%lld",&t),ans1=ans2=0;
42         if (t==0) scanf("%lld%lld",&a,&b),insert(1,1,n,a,a,b);
43         if (t==1) scanf("%lld%lld%lld",&a,&b,&c),insert(1,1,n,a,b,c);
44         if (t==2) scanf("%lld%lld",&a,&b),Query(1,1,n,a,b),printf("%lld
",ans1);
45         if (t==3)
46         {
47             scanf("%lld%lld",&a,&b);
48             Query(1,1,n,a,b);
49             double x=ans1,y=ans2,z=(b-a+1);
50             ans=(double)((double)y*z-(double)x*x)/((double)z*z);
51             printf("%.4lf
",ans);
52         }
53     }
54 }

 

以上是关于[线段树] Jzoj P4231 寻找神格的主要内容,如果未能解决你的问题,请参考以下文章

JZOJ4605. 排序(线段树合并与分裂)

[线段树]JZOJ 5812

[线段树]JZOJ 1214 项链工厂

魔性の分块 | | jzoj1243 | | 线段树の暴力

[扫描线][倍增][dfs序][线段树] Jzoj P6276 树

JZOJ 5750. 青青草原播种计划 (小性质+线段树)