RabbitMQ中RPC的实现及其通信机制

Posted fg123

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了RabbitMQ中RPC的实现及其通信机制相关的知识,希望对你有一定的参考价值。

RabbitMQ中RPC的实现:客户端发送请求消息,服务端回复响应消息,为了接受响应response,客户端需要发送一个回调队列的地址来接受响应,每条消息在发送的时候会带上一个唯一的correlation_id,相应的服务端处理计算后会将结果返回到对应的correlation_id。

RPC调用流程:

技术分享图片

当生产者启动时,它会创建一个匿名的独占回调队列,对于一个RPC请求,生产者发送一条具有两个属性的消息:reply_to(回调队列),correlation_id(每个请求的唯一值),请求被发送到rpc_queue队列,消费者等待该队列上的请求。当一个请求出现时,它会执行该任务,将带有结果的消息发送回生产者。生产者等待回调队列上的数据,当消息出现时,它检查相关ID属性,如果它与请求中的值匹配,则返回对应用程序的响应。

 RabbitMQ斐波拉契计算的RPC,消费者实现:

"""
基于RabbitMQ实现RPC通信机制 --> 服务端
"""

import pika
import uuid
from functools import lru_cache


class RabbitServer(object):
    def __init__(self):
        self.conn = pika.BlockingConnection(
            pika.ConnectionParameters(host=localhost, port=5672)
        )
        self.channel = self.conn.channel()

        # 声明一个队列,并进行持久化,exclusive设置为false
        self.channel.queue_declare(
            exclusive=False, durable=True, queue=task_queue
        )

        # 声明一个exhange交换机,类型为topic
        self.channel.exchange_declare(
            exchange=logs_rpc, exchange_type=topic, durable=True
        )

        # 将队列与交换机进行绑定
        routing_keys = [#]  # 接受所有的消息
        for routing_key in routing_keys:
            self.channel.queue_bind(
                exchange=logs_rpc, queue=task_queue, routing_key=routing_key
            )

    @lru_cache()
    def fib(self, n):
        """
        斐波那契数列.===>程序的处理逻辑
        使用lru_cache 优化递归
        :param n:
        :return:
        """
        if n == 0:
            return 0
        elif n == 1:
            return 1
        else:
            return self.fib(n - 1) + self.fib(n - 2)

    def call_back(self, channel, method, properties, body):
        print(------------------------------------------)
        print(接收到的消息为(斐波那契数列的入参项为):{}.format(str(body)))
        print(消息的相关属性为:)
        print(properties)
        value = self.fib(int(body))
        print(斐波那契数列的运行结果为:{}.format(str(value)))

        # 交换机将消息发送到队列
        self.channel.basic_publish(
            exchange=‘‘,
            routing_key=properties.reply_to,
            body=str(value),
            properties=pika.BasicProperties(
                delivery_mode=2,
                correlation_id=properties.correlation_id,
            ))

        # 消费者对消息进行确认
        self.channel.basic_ack(delivery_tag=method.delivery_tag)

    def receive_msg(self):
        print(开始接受消息...)
        self.channel.basic_qos(prefetch_count=1)
        self.channel.basic_consume(
            consumer_callback=self.call_back,
            queue=task_queue,
            no_ack=False,  # 消费者对消息进行确认
            consumer_tag=str(uuid.uuid4())
        )

    def consume(self):
        self.receive_msg()
        self.channel.start_consuming()


if __name__ == __main__:
    rabbit_consumer = RabbitServer()
    rabbit_consumer.consume()

 生产者实现:

"""
基于RabbitMQ实现RPC通信机制 --> 客户端
"""

import pika
import uuid
import time


class RabbitClient(object):
    def __init__(self):
        # 与RabbitMq服务器建立连接
        self.conn = pika.BlockingConnection(
            pika.ConnectionParameters(host=localhost, port=5672)
        )
        self.channel = self.conn.channel()

        # 声明一个exchange交换机,交换机的类型为topic
        self.channel.exchange_declare(
            exchange=logs_rpc, exchange_type=topic, durable=True
        )

        # 声明一个回调队列,用于接受RPC回调结果的运行结果
        result = self.channel.queue_declare(durable=True, exclusive=False)
        self.call_queue = result.method.queue

        # 从回调队列当中获取运行结果.
        self.channel.basic_consume(
            consumer_callback=self.on_response,
            queue=self.call_queue,
            no_ack=False
        )

    def on_response(self, channel, method, properties, body):
        """
        对收到的消息进行确认
        找到correlation_id与服务端的消息标识匹配的消息结果
        :param channel:
        :param method:
        :param properties:
        :param body:
        :return:
        """
        if self.corr_id == properties.correlation_id:
            self.response = body
            print(斐波那契数列的RPC返回结果是:{}.format(body))
            print(相关属性信息:)
            print(properties)
        self.channel.basic_ack(delivery_tag=method.delivery_tag)

    def send_msg(self, routing_key, message):
        """
        exchange交换机将根据消息的路由键将消息路由到对应的queue当中
        :param routing_key: 消息的路由键
        :param message: 生成者发送的消息
        :return:
        """
        self.response = None
        self.corr_id = str(uuid.uuid4())
        self.channel.basic_publish(
            exchange=logs_rpc,
            routing_key=routing_key,
            body=message,
            properties=pika.BasicProperties(
                delivery_mode=2,
                correlation_id=self.corr_id,
                reply_to=self.call_queue,
            ))

        while self.response is None:
            print(等待远程服务端的返回结果...)
            self.conn.process_data_events()  # 非阻塞式的不断获取消息.

        return self.response

    def close(self):
        self.conn.close()


if __name__ == "__main__":
    rabbit_producer = RabbitClient()
    routing_key = hello every one
    start_time = int(time.time())
    for item in range(2000):
        num = str(item)
        print(生产者发送的消息为:{}.format(num))
        rabbit_producer.send_msg(routing_key, num)
    end_time = int(time.time())
    print("耗时{}s".format(str(end_time - start_time)))

计算2000以内的斐波拉契数列,执行结果如下:

技术分享图片

 

技术分享图片

 


以上是关于RabbitMQ中RPC的实现及其通信机制的主要内容,如果未能解决你的问题,请参考以下文章

RabbitMQ 实现RPC

Hadoop RPC通信机制

Python开发项目:RPC异步执行命令(RabbitMQ双向通信)

RabbitMQ4--发后即忘和RPC

RPC使用rabbitmq实现

理解Android系统的进程间通信原理----RPC机制