Numpy 函数总结 (不断更新)

Posted massquantity

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Numpy 函数总结 (不断更新)相关的知识,希望对你有一定的参考价值。

本篇主要收集一些平时见到的 Numpy 函数。



numpy.random.seed & numpy.random.RandomState

np.random.seed()np.random.RandomState 都用于生成随机数种子,np.random.seed() 是可以直接调用的方法,而 np.random.RandomState 则是一个产生随机数的容器,使用时需要创建实例对象,进而调用实例方法,如 np.random.RandomState(42).uniform()

随机数种子 seed 只有一次有效,在下一次调用产生随机数函数前没有设置 seed,则还是产生随机数。如果需要每次都产生随机数,则可以将随机数seed设置成None,或者不设置。

>>> import numpy as np

>>> np.random.seed(42)
>>> np.random.randint(1, 10, 5)  # array([5, 1, 2, 6, 1])

>>> np.random.seed(42)
>>> np.random.randint(1, 10, 5)  # array([5, 1, 2, 6, 1])

>>> np.random.randint(1, 10, 5)  # array([8, 8, 3, 6, 5])
>>> from numpy.random import RandomState

>>> r = RandomState(42)
>>> r.randint(1, 10, 5)    # array([9, 9, 7, 3, 9])

>>> r = RandomState(42)
>>> r.randint(1, 10, 5)    # array([9, 9, 7, 3, 9])

>>> r = RandomState(None)
>>> r.randint(1, 10, 5)    # array([8, 3, 2, 6, 5])
>>> import random  # 使用Python的Random模块
>>> random.seed(42)
>>> random.sample(range(10), 5)  # [1, 0, 4, 9, 6]

>>> random.sample(range(10), 5)  # [6, 9, 1, 4, 5]




numpy.tile

numpy.tile(A, n) 用于将一整个数组 A 重复 n 次。 下面是一个简单的例子:

>>> a = [1,2,3,4]
>>> np.tile(a, 3)  # array([1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4])

然而如果 n 的长度大于 1,则情况就略复杂了。下面看个例子:

>>> a = np.array([1,2,3])
>>> np.tile(a, (3, 3))

array([[1, 2, 3, 1, 2, 3, 1, 2, 3],
       [1, 2, 3, 1, 2, 3, 1, 2, 3],
       [1, 2, 3, 1, 2, 3, 1, 2, 3]])

上面的原始数组 a 为一维,n 的长度为 2,则 tile 函数会将原来的一维拓展为 2 维,再在每一维上重复相应的数组,相当于下面两步:

>>> a = np.array([1,2,3])
>>> a = np.expand_dims(a, axis=0)
# a 为 array([[1, 2, 3]])
>>> np.tile(a, (3, 3))

上面的情况是 n 的长度大于 a 的维度,另一种情况是 n 的长度小于 a 的维度:

>>> b = np.array([[1,2,3], [4,5,6]])
>>> np.tile(b, 2)

array([[1, 2, 3, 1, 2, 3],
       [4, 5, 6, 4, 5, 6]])

上面的情况是 b 的维度为 2,n 的长度为1,则同样 n 会被扩展为 2,不足的维度用 1 填充,即变成 (1, 2),所以上例中 b 的第一维没有被复制,被复制的是第二维。最后按惯例是一个复杂点的例子:

>>> c = np.arange(27).reshape((3,3,3))
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],

       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],

       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])

>>> np.tile(c, (2,2,2))
array([[[ 0,  1,  2,  0,  1,  2],
        [ 3,  4,  5,  3,  4,  5],
        [ 6,  7,  8,  6,  7,  8],
        [ 0,  1,  2,  0,  1,  2],
        [ 3,  4,  5,  3,  4,  5],
        [ 6,  7,  8,  6,  7,  8]],

       [[ 9, 10, 11,  9, 10, 11],
        [12, 13, 14, 12, 13, 14],
        [15, 16, 17, 15, 16, 17],
        [ 9, 10, 11,  9, 10, 11],
        [12, 13, 14, 12, 13, 14],
        [15, 16, 17, 15, 16, 17]],

       [[18, 19, 20, 18, 19, 20],
        [21, 22, 23, 21, 22, 23],
        [24, 25, 26, 24, 25, 26],
        [18, 19, 20, 18, 19, 20],
        [21, 22, 23, 21, 22, 23],
        [24, 25, 26, 24, 25, 26]],

       [[ 0,  1,  2,  0,  1,  2],
        [ 3,  4,  5,  3,  4,  5],
        [ 6,  7,  8,  6,  7,  8],
        [ 0,  1,  2,  0,  1,  2],
        [ 3,  4,  5,  3,  4,  5],
        [ 6,  7,  8,  6,  7,  8]],

       [[ 9, 10, 11,  9, 10, 11],
        [12, 13, 14, 12, 13, 14],
        [15, 16, 17, 15, 16, 17],
        [ 9, 10, 11,  9, 10, 11],
        [12, 13, 14, 12, 13, 14],
        [15, 16, 17, 15, 16, 17]],

       [[18, 19, 20, 18, 19, 20],
        [21, 22, 23, 21, 22, 23],
        [24, 25, 26, 24, 25, 26],
        [18, 19, 20, 18, 19, 20],
        [21, 22, 23, 21, 22, 23],
        [24, 25, 26, 24, 25, 26]]])

最后出来的结果其实非常具有对称的美感。


另外与 numpy.tile() 有密切联系的函数为 numpy.repeat() ,其功能是对应元素重复:

>>> np.repeat(13, 5)   # array([13, 13, 13, 13, 13])

numpy.repeat() 可以制定要重复的轴 (axis),但如果不指定,则将原数组拉伸为 1 维数组后再对应元素重复:

>>> a = np.array([[1,2], [3,4]])
>>> np.repeat(a, 3)  # array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4])

>>> np.repeat(a, 3, axis=1)
array([[1, 1, 1, 2, 2, 2],
       [3, 3, 3, 4, 4, 4]])





/











以上是关于Numpy 函数总结 (不断更新)的主要内容,如果未能解决你的问题,请参考以下文章

numpy 中的几个函数功能,在python学习中不断更新

回归 | js实用代码片段的封装与总结(持续更新中...)

总结--- Numpy和Pandas库常用函数

swift常用代码片段

乐哥学AI_Python:Numpy索引,切片,常用函数

Numpy总结第七节:Numpy常用的函数(汇总所有函数,收藏这一篇就OK啦~)