UVA12253 简单加密法 Simple Encryption

Posted cjjsb

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了UVA12253 简单加密法 Simple Encryption相关的知识,希望对你有一定的参考价值。

这题到现在还是只有我一个人过?太冷门了吧,毕竟你谷上很少有人会去做往年ACM比赛的题

题面意思很简单,每次给出(K_1),让你求一个(K_2)满足(K_1^{K_2}equiv K_2(mod 10^{12}))

题目乍一看很有数学风格,看到取模和幂次想到什么?

费马大小定理,BSGS,二次探测,不过在这里好像都用不了啊。

所以我们先考虑一个最朴素的想法:爆搜,每次直接枚举每一位上放什么数字,然后快速幂判断。

这样肯定T飞啊,所以我们进行一个大力观察,我们手玩下第二个样例:

[99^9equiv 9(mod 10^{1});99^9equiv 99(mod 10^{2})]

[99^{99}equiv 99(mod 10^{2});99^{99}equiv 899(mod 10^{3})]

[99^{899}equiv 899(mod 10^{3});99^{899}equiv 9899(mod 10^{4})]

(dots)

发现什么没,若(K_1^{n}equiv dn(mod 10^{operatorname{bit}_n+1})),那么(K_1^{dn}equiv dn(mod 10^{operatorname{bit}_{dn}}))!(上面的(dn)表示在(n)前面放一个(d)

这个规律的提出在大刘的蓝书上也有涉及,并且可以用归纳法证明之,这里不再赘述。

所以接下来的流程就出来了,我们对于每一位,如果可以用这个规律刷出下一位就直接跳,否则(就是用规律算出前导零的情况)再枚举这一位的取值。

实际应用下在这个trick的优化下,再加上玄学的(O(1))快速乘,可以跑的非常快((200ms)过了(1600)组数据)。

CODE

#include<cstdio>
#define RI register int
typedef long long LL;
const LL lim=1e11,R=(1LL<<20)-1; int n,cases;
LL quick_mul(LL x, LL y, LL mod)
{
    return (x *(y>>20)%mod*(1LL<<20)%mod+x*(y&(R))%mod)%mod;
}
inline LL quick_pow(LL x,LL p,LL mod,LL mul=1)
{
    for (;p;p>>=1,x=quick_mul(x,x,mod)) if (p&1) mul=quick_mul(mul,x,mod); return mul;
}
inline bool expand(int idx,LL n,LL p,LL mod)
{
    int t; LL nxt; while (idx<12) if ((nxt=quick_pow(n,p,10LL*mod))!=p) p=nxt,++idx,mod*=10LL; else break;
    if (idx==12&&quick_pow(n,p,mod)==p) return printf("%lld
",p),1; return 0;
}
inline bool DFS(int idx,LL p,LL mod)
{
    if (idx==12) { if (p>=lim&&quick_pow(n,p,mod)==p) return printf("%lld
",p),1; return 0; }
    if (quick_pow(n,p,mod)==p&&expand(idx,n,p,mod)) return 1;
    for (RI i=0;i<10;++i) if (quick_pow(n,1LL*i*mod+p,mod)==p&&DFS(idx+1,1LL*i*mod+p,10LL*mod)) return 1; return 0;
}
int main()
{
    //freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
    while (scanf("%d",&n),n)
    {
        printf("Case %d: Public Key = %d Private Key = ",++cases,n);
        for (RI i=0;i<10;++i) if (DFS(1,i,10)) break;
    }
    return 0;
}

以上是关于UVA12253 简单加密法 Simple Encryption的主要内容,如果未能解决你的问题,请参考以下文章

7.openssl enc

Springboot实现ENC加密

UVA10912 Simple Minded HashingDP

UVA10994 Simple Addition前缀和

UVA11565 Simple Equations数学+暴力

攻防世界:web区simple_js