各种优化方法总结比較(sgd/momentum/Nesterov/adagrad/adadelta)

Posted zhchoutai

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了各种优化方法总结比較(sgd/momentum/Nesterov/adagrad/adadelta)相关的知识,希望对你有一定的参考价值。

前言

这里讨论的优化问题指的是,给定目标函数f(x),我们须要找到一组參数x。使得f(x)的值最小。

本文下面内容如果读者已经了解机器学习基本知识,和梯度下降的原理。

SGD

SGD指stochastic gradient descent,即随机梯度下降。是梯度下降的batch版本号。

对于训练数据集,我们首先将其分成n个batch,每一个batch包括m个样本。我们每次更新都利用一个batch的数据。而非整个训练集。

即:

xt+1=xt+Δxt

Δxt=?ηgt

当中。η为学习率,gt为x在t时刻的梯度。

这么做的优点在于:

  • 当训练数据太多时。利用整个数据集更新往往时间上不显示。batch的方法能够降低机器的压力,而且能够更快地收敛。

  • 当训练集有非常多冗余时(相似的样本出现多次),batch方法收敛更快。以一个极端情况为例。若训练集前一半和后一半梯度同样。那么如果前一半作为一个batch,后一半作为还有一个batch。那么在一次遍历训练集时,batch的方法向最优解前进两个step,而总体的方法仅仅前进一个step。

Momentum

SGD方法的一个缺点是,其更新方向全然依赖于当前的batch。因而其更新十分不稳定。

解决这一问题的一个简单的做法便是引入momentum。

momentum即动量,它模拟的是物体运动时的惯性,即更新的时候在一定程度上保留之前更新的方向。同一时候利用当前batch的梯度微调终于的更新方向。

这样一来,能够在一定程度上添加稳定性,从而学习地更快,而且还有一定摆脱局部最优的能力:

Δxt=ρΔxt?1?ηgt

当中,ρ 即momentum,表示要在多大程度上保留原来的更新方向,这个值在0-1之间,在训练開始时,因为梯度可能会非常大,所以初始值一般选为0.5;当梯度不那么大时,改为0.9。η 是学习率,即当前batch的梯度多大程度上影响终于更新方向,跟普通的SGD含义同样。ρη 之和不一定为1。

Nesterov Momentum

这是对传统momentum方法的一项改进,由Ilya Sutskever(2012 unpublished)在Nesterov工作的启示下提出的。

其基本思路例如以下图(转自Hinton的coursera公开课lecture 6a):

技术分享图片

首先,依照原来的更新方向更新一步(棕色线)。然后在该位置计算梯度值(红色线),然后用这个梯度值修正终于的更新方向(绿色线)。

上图中描写叙述了两步的更新示意图。当中蓝色线是标准momentum更新路径。

公式描写叙述为:

Δxt=ρΔxt?1?ηΔf(xt+ρΔxt?1)

Adagrad

上面提到的方法对于全部參数都使用了同一个更新速率。可是同一个更新速率不一定适合全部參数。比方有的參数可能已经到了仅须要微调的阶段。但又有些參数因为相应样本少等原因,还须要较大幅度的调动。

Adagrad就是针对这一问题提出的,自适应地为各个參数分配不同学习率的算法。其公式例如以下:

Δxt=?ηtτ=1g2τ+?gt

当中gt 同样是当前的梯度,连加和开根号都是元素级别的运算。eta 是初始学习率。因为之后会自己主动调整学习率,所以初始值就不像之前的算法那样重要了。而?是一个比較小的数,用来保证分母非0。

其含义是,对于每一个參数。随着其更新的总距离增多,其学习速率也随之变慢。

Adadelta

Adagrad算法存在三个问题

  • 其学习率是单调递减的,训练后期学习率非常小
  • 其须要手工设置一个全局的初始学习率
  • 更新xt时。左右两边的单位不同一

Adadelta针对上述三个问题提出了比較美丽的解决方式。

首先,针对第一个问题,我们能够仅仅使用adagrad的分母中的累计项离当前时间点比較近的项,例如以下式:

E[g2]t=ρE[g2]t?1+(1?ρ)g2t

Δxt=?ηE[g2]t+?gt

这里ρ是衰减系数,通过这个衰减系数。我们令每一个时刻的gt随之时间依照ρ指数衰减。这样就相当于我们仅使用离当前时刻比較近的gt信息。从而使得还非常长时间之后,參数仍然能够得到更新。

针对第三个问题,事实上sgd跟momentum系列的方法也有单位不统一的问题。sgd、momentum系列方法中:

Δxg?f?x1x

相似的,adagrad中,用于更新Δx的单位也不是x的单位。而是1。

而对于牛顿迭代法:

Δx=H?1tgt

当中H为Hessian矩阵。因为其计算量巨大。因而实际中不常使用。其单位为:
ΔxH?1g?f?x?2f?2xx

注意,这里f无单位。因而,牛顿迭代法的单位是正确的。

所以,我们能够模拟牛顿迭代法来得到正确的单位。注意到:

Δx=?f?x?2f?2x?1?2f?2x=Δx?f?x

这里,在解决学习率单调递减的问题的方案中,分母已经是?f?x的一个近似了。这里我们能够构造Δx的近似,来模拟得到H?1的近似,从而得到近似的牛顿迭代法。详细做法例如以下:
Δxt=?E[Δx2]t?1E[g2]t+?gt

能够看到,如此一来adagrad中分子部分须要人工设置的初始学习率也消失了,从而顺带攻克了上述的第二个问题。

各个方法的比較

Karpathy做了一个这几个方法在MNIST上性能的比較,其结论是:
adagrad相比于sgd和momentum更加稳定,即不须要怎么调參。而精调的sgd和momentum系列方法不管是收敛速度还是precision都比adagrad要好一些。

在精调參数下,一般Nesterov优于momentum优于sgd。而adagrad一方面不用怎么调參,还有一方面其性能稳定优于其它方法。

实验结果图例如以下:

Loss vs. Number of examples seen
技术分享图片

Testing Accuracy vs. Number of examples seen
技术分享图片

Training Accuracy vs. Number of examples seen技术分享图片

其它总结文章

近期看到了一个非常棒的总结文章,除了本文的几个算法。还总结了RMSProp跟ADAM(当中ADAM是眼下最好的优化算法,不知道用什么的话用它就对了)






















以上是关于各种优化方法总结比較(sgd/momentum/Nesterov/adagrad/adadelta)的主要内容,如果未能解决你的问题,请参考以下文章

深度学习全优化方法总结比较(转)

深度学习的优化方法 总结

各种MQTT server功能比較

各种优化器Optimizer的总结与比较

前端性能的优化总结

Equals和==比較