青蛙的约会 POJ - 1061 (exgcd)

Posted wtsruvf

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了青蛙的约会 POJ - 1061 (exgcd)相关的知识,希望对你有一定的参考价值。

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

就是一个exgcd板题 关键在于推公式
exgcd就是用特解求全部解 找出一个特殊情况就好了
注意答案为负数的情况

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d
", a)
#define plld(a) printf("%lld
", a)
#define pc(a) printf("%c
", a)
#define ps(a) printf("%s
", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _  ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = 10010, INF = 0x7fffffff;

LL gcd(LL a, LL b)
{
    return b == 0 ? a : gcd(b, a % b);
}

LL exgcd(LL a, LL b, LL& d, LL& x, LL& y)
{
    if(!b)
    {
        d = a;
        x = 1;
        y = 0;
    }
    else
    {
        exgcd(b, a % b, d, y, x);
        y -= x * (a / b);
    }
}

int main()
{
    LL a, b, d, x, y;
    LL _x, _y, m, n, l;
    cin >> _x >> _y >> m >> n >> l;
    if((_x - _y) % gcd(l, n - m)) return puts("Impossible");
    exgcd(n - m, l, d, x, y);
    x *= (_x - _y) / d;
    x = (x % l + l) % l;
    cout << x << endl;

    return 0;
}

 








以上是关于青蛙的约会 POJ - 1061 (exgcd)的主要内容,如果未能解决你的问题,请参考以下文章

POJ 1061 青蛙的约会 | 同余方程和exGcd

POJ 1061 - 青蛙的约会 - [exgcd求解一元线性同余方程]

AC日记——青蛙的约会 poj 1061

poj-1061-exgcd

扩展欧几里德 poj1061 青蛙的约会

POJ1061 青蛙的约会