bzoj 3456 城市规划

Posted kong-ruo

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了bzoj 3456 城市规划相关的知识,希望对你有一定的参考价值。

求 n 个点简单无向连通图个数,膜 $1004535809$ (是一个质数,原根是 $3$)

$n leq 130000$

sol:

推式子的方法...应该到处都有

记录一下指数生成函数 (EGF) 的做法

先设 $g(x)$ 为 n 个点简单无向图的 EGF ,可以知道 $g(x)=sumlimits_{i=0}^{infty} 2^{inom{i}{2}} imes frac{x^i}{i!}$

然后考虑求 n 个点简单无向连通图的 EGF ,记为 $f(x)$

一个不一定连通的图由若干个连通块组成,枚举一下连通块的大小得到 $g(x)=sumlimits_{i=0}^{infty} frac{(f(x))^i}{i!}$

可以理解成,包含 1 个连通块的是 $f(x)$ ,两个连通块的是 $frac{1}{2} imes (f(x))^2$ ,三个连通块的是 $frac{1}{6} imes (f(x))^3$ ...

然后考虑 $e^x$ 的泰勒展开,$e^x = sumlimits_{i=0}^{infty} frac{x^i}{i!}$ ,可以知道 $g(x) = exp(f(x))$ ,则 $f(x) = ln(g(x))$ 

多项式求 ln 即可,答案就是 $[x^n]f(x) imes n!$

以上是关于bzoj 3456 城市规划的主要内容,如果未能解决你的问题,请参考以下文章

BZOJ3456:城市规划——题解

bzoj3456 城市规划

BZOJ 3456: 城市规划

[BZOJ3456]城市规划

bzoj 3456城市规划

BZOJ3456: 城市规划 多项式求逆