POJ3070 Fibonacci矩阵快速幂
Posted tigerisland45
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ3070 Fibonacci矩阵快速幂相关的知识,希望对你有一定的参考价值。
Fibonacci
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 20098 Accepted: 13850
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn ? 1 + Fn ? 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number ?1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0
9
999999999
1000000000
-1
Sample Output
0
34
626
6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
Stanford Local 2006
问题链接:POJ3070 Fibonacci
问题简述:(略)
问题分析:
????矩阵快速幂的模板题。
程序说明:(略)
参考链接:(略)
题记:(略)
AC的C语言程序如下:
/* POJ3070 Fibonacci */
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
const int MOD = 1e4;
const int N = 2;
struct Matrix
{
int m[N][N];
Matrix() {}
Matrix operator*(Matrix const &a)const
{
Matrix b;
memset(b.m, 0, sizeof(b.m));
for (int i = 0 ;i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
b.m[i][j] = (b.m[i][j] + this->m[i][k] * a.m[k][j]) % MOD;
return b;
}
};
Matrix pow_mod(Matrix a, int n)
{
Matrix b;
memset(b.m, 0, sizeof(b.m));
for (int i = 0; i < N; i++)
b.m[i][i] = 1;
while (n > 0)
{
if (n & 1) b = b * a;
a = a * a;
n >>= 1;
}
return b;
}
int main()
{
Matrix a;
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
a.m[i][j] = 1;
a.m[1][1] = 0;
int n;
while (~scanf("%d", &n) && n != -1)
{
Matrix b = pow_mod(a, n);
printf("%d
", b.m[0][1]);
}
return 0;
}
以上是关于POJ3070 Fibonacci矩阵快速幂的主要内容,如果未能解决你的问题,请参考以下文章
poj 3070 Fibonacci(矩阵快速幂求Fibonacci数列)