二叉搜索树
Posted archer-fang
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二叉搜索树相关的知识,希望对你有一定的参考价值。
二叉搜索树(BST)有时也被叫做有序二叉树或者排序二叉树是一种特别的容器类型:是一种储存数据到内存中的数据结构。二叉树允许快速查找,添加和删除元素,而且不仅可以被用于实现动态数据集,而且在查找数据表的时候可以允许通过key来查找一个元素。
二叉查找树会保持节点的key是排好序的,因此做查找或者其他操作的时候可以使用二分法
时间复杂度O(logn)
如图:左小中 中小右
BinarySearchTreeNode:
import BinaryTreeNode from ‘../BinaryTreeNode‘; import Comparator from ‘../../../utils/comparator/Comparator‘; export default class BinarySearchTreeNode extends BinaryTreeNode { /** * @param {*} [value] - node value. * @param {function} [compareFunction] - comparator function for node values. */ constructor(value = null, compareFunction = undefined) { super(value); // This comparator is used to compare node values with each other. this.compareFunction = compareFunction; this.nodeValueComparator = new Comparator(compareFunction); } /** * @param {*} value * @return {BinarySearchTreeNode} */ insert(value) { if (this.nodeValueComparator.equal(this.value, null)) { this.value = value; return this; } if (this.nodeValueComparator.lessThan(value, this.value)) { // Insert to the left. if (this.left) { return this.left.insert(value); } const newNode = new BinarySearchTreeNode(value, this.compareFunction); this.setLeft(newNode); return newNode; } if (this.nodeValueComparator.greaterThan(value, this.value)) { // Insert to the right. if (this.right) { return this.right.insert(value); } const newNode = new BinarySearchTreeNode(value, this.compareFunction); this.setRight(newNode); return newNode; } return this; } /** * @param {*} value * @return {BinarySearchTreeNode} */ find(value) { // Check the root. if (this.nodeValueComparator.equal(this.value, value)) { return this; } if (this.nodeValueComparator.lessThan(value, this.value) && this.left) { // Check left nodes. return this.left.find(value); } if (this.nodeValueComparator.greaterThan(value, this.value) && this.right) { // Check right nodes. return this.right.find(value); } return null; } /** * @param {*} value * @return {boolean} */ contains(value) { return !!this.find(value); } /** * @param {*} value * @return {boolean} */ remove(value) { const nodeToRemove = this.find(value); if (!nodeToRemove) { throw new Error(‘Item not found in the tree‘); } const { parent } = nodeToRemove;//找到要移除结点的父结点 if (!nodeToRemove.left && !nodeToRemove.right) { // Node is a leaf and thus has no children. if (parent) { // Node has a parent. Just remove the pointer to this node from the parent. parent.removeChild(nodeToRemove); } else { // Node has no parent. Just erase current node value. nodeToRemove.setValue(undefined); } } else if (nodeToRemove.left && nodeToRemove.right) { // Node has two children. // Find the next biggest value (minimum value in the right branch)找到根节点的下一个相连结点(数值上的) // and replace current value node with that next biggest value. const nextBiggerNode = nodeToRemove.right.findMin(); if (!this.nodeComparator.equal(nextBiggerNode, nodeToRemove.right)) {//如果右子树的最小节点和要删除的节点的右子节点不是同一个节点,那么就删掉右子树最小节点的值,给要删除节点赋值 this.remove(nextBiggerNode.value); nodeToRemove.setValue(nextBiggerNode.value); } else { // In case if next right value is the next bigger one and it doesn‘t have left child如果右子树的最小节点和要删除的节点的右子节点是同一个节点,且右子树的那个结点无左孩子 // then just replace node that is going to be deleted with the right node. nodeToRemove.setValue(nodeToRemove.right.value); nodeToRemove.setRight(nodeToRemove.right.right); } } else { // Node has only one child. // Make this child to be a direct child of current node‘s parent. /** @var BinarySearchTreeNode */ const childNode = nodeToRemove.left || nodeToRemove.right; if (parent) { parent.replaceChild(nodeToRemove, childNode); } else { BinaryTreeNode.copyNode(childNode, nodeToRemove); } } // Clear the parent of removed node. nodeToRemove.parent = null; return true; } /** * @return {BinarySearchTreeNode} */ findMin() { if (!this.left) { return this; } return this.left.findMin(); } }
BinarySearchTree:
import BinarySearchTreeNode from ‘./BinarySearchTreeNode‘; export default class BinarySearchTree { /** * @param {function} [nodeValueCompareFunction] */ constructor(nodeValueCompareFunction) { this.root = new BinarySearchTreeNode(null, nodeValueCompareFunction); // Steal node comparator from the root. this.nodeComparator = this.root.nodeComparator; } /** * @param {*} value * @return {BinarySearchTreeNode} */ insert(value) { return this.root.insert(value); } /** * @param {*} value * @return {boolean} */ contains(value) { return this.root.contains(value); } /** * @param {*} value * @return {boolean} */ remove(value) { return this.root.remove(value); } /** * @return {string} */ toString() { return this.root.toString(); } }
note:
1.BinarySearchTreeNode中remove的说明:找到要删除的结点,要删除结点的父结点,
即:
const { parent } = nodeToRemove;
然后分三种情况考虑
(1)没有左孩子也没有右孩子,如果存在父结点则,删除该节点,否则根结点置空
(2)左(this.left)右孩子(this.right)都有,找到该结点右子树最小的结点即为min进行判断
【1】如果min!=this.right,则递归的去删除掉min所在结点,并且把min的值赋给this
!!!【2】如果min=this.right,则this.right.left必为null,,所以把min值给this,同时,this.right=this.right.right.
(3)只有左孩子或者右孩子,如果有父结点,则用该结点的左或右孩子替换掉该结点,否则删除该结点的左或右结点,并且把该结点的左或右结点的1.值2.左孩子3.右孩子,赋值给该结点。
以上是关于二叉搜索树的主要内容,如果未能解决你的问题,请参考以下文章
代码随想录Day20-Leetcode654.最大二叉树,617.合并二叉树,700.二叉搜索树中的搜索,98.验证二叉搜索树