算法基础背包

Posted bxmengzhi

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了算法基础背包相关的知识,希望对你有一定的参考价值。

基础背包

题目

有N件物品和一个容量为V的背包。第i件物品的重量是w[i],价值是v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。
 

基本思路

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:
f[i][v]=max{ f[i-1][v], f[i-1][v-w[i]]+v[i] }。
可以压缩空间,f[v]=max{f[v],f[v-w[i]]+v[i]}
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-w[i]的背包中”,此时能获得的最大价值就是f [i-1][v-w[i]]再加上通过放入第i件物品获得的价值v[i]。
注意f[v]有意义当且仅当存在一个前i件物品的子集,其费用总和为f[v]。所以按照这个方程递推完毕后,最终的答案并不一定是f[N] [V],而是f[N][0..V]的最大值。如果将状态的定义中的“恰”字去掉,在转移方程中就要再加入一项f[v-1],这样就可以保证f[N] [V]就是最后的答案。至于为什么这样就可以,由你自己来体会了。
 

空间复杂

以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f [0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?
f[i][v]是由f[i-1][v]和f [i-1][v-w[i]]两个子问题递推而来,能否保证在推f[v]时(也即在第i次主循环中推f[v]时)能够得到f[v]和f[v -w[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-w[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下:
for i=1..N
for v=V..0
f[v]=max{f[v],f[v-w[i]]+v[i]};
其中的f[v]=max{f[v],f[v-w[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-w[i]]},因为的
f[v-w[i]]就相当于原来的f[i-1][v-w[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-w[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。 

以上是关于算法基础背包的主要内容,如果未能解决你的问题,请参考以下文章

基础算法——动态规划0/1背包问题

进击的算法动态规划——01背包

算法系列学习[kuangbin带你飞]专题十二 基础DP1 F - Piggy-Bank 完全背包问题

算法模板-01背包

算法模板-01背包

算法模板-01背包