详解亿级大数据表的几种建立分区表的方式
Posted gxyandwmm
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了详解亿级大数据表的几种建立分区表的方式相关的知识,希望对你有一定的参考价值。
自5.1开始对分区(Partition)有支持,一张表最多1024个分区 查询分区数据: SELECT * from table PARTITION(p0) 水平分区(根据列属性按行分) 举个简单例子:一个包含十年发票记录的表可以被分区为十个不同的分区,每个分区包含的是其中一年的记录。 垂直分区(按列分) 举个简单例子:一个包含了大text和BLOB列的表,这些text和BLOB列又不经常被访问,这时候就要把这些不经常使用的text和BLOB了划分到另一个分区,在保证它们数据相关性的同时还能提高访问速度。 === 水平分区的几种模式:=== * Range(范围) – 这种模式允许DBA将数据划分不同范围。例如DBA可以将一个表通过年份划分成三个分区,80年代(1980‘s)的数据,90年代(1990‘s)的数据以及任何在2000年(包括2000年)后的数据。 * Hash(哈希) – 这中模式允许DBA通过对表的一个或多个列的Hash Key进行计算,最后通过这个Hash码不同数值对应的数据区域进行分区,。例如DBA可以建立一个对表主键进行分区的表。 * Key(键值) – 上面Hash模式的一种延伸,这里的Hash Key是mysql系统产生的。 * List(预定义列表) – 这种模式允许系统通过DBA定义的列表的值所对应的行数据进行分割。例如:DBA建立了一个横跨三个分区的表,分别根据2004年2005年和2006年值所对应的数据。 * Composite(复合模式) - 很神秘吧,哈哈,其实是以上模式的组合使用而已,就不解释了。举例:在初始化已经进行了Range范围分区的表上,我们可以对其中一个分区再进行hash哈希分区。 水平分区 [分区表和未分区表试验过程] *创建分区表,按日期的年份拆分 mysql> CREATE TABLE part_tab ( c1 int default NULL, c2 varchar(30) default NULL, c3 date default NULL) engine=myisam PARTITION BY RANGE (year(c3)) (PARTITION p0 VALUES LESS THAN (1995), PARTITION p1 VALUES LESS THAN (1996) , PARTITION p2 VALUES LESS THAN (1997) , PARTITION p3 VALUES LESS THAN (1998) , PARTITION p4 VALUES LESS THAN (1999) , PARTITION p5 VALUES LESS THAN (2000) , PARTITION p6 VALUES LESS THAN (2001) , PARTITION p7 VALUES LESS THAN (2002) , PARTITION p8 VALUES LESS THAN (2003) , PARTITION p9 VALUES LESS THAN (2004) , PARTITION p10 VALUES LESS THAN (2010), PARTITION p11 VALUES LESS THAN MAXVALUE ); 注意最后一行,考虑到可能的最大值 *查看创建的情况: mysql> show create table part_tab;
*创建未分区表 mysql> create table no_part_tab (c1 int(11) default NULL,c2 varchar(30) default NULL,c3 date default NULL) engine=myisam; *通过存储过程灌入800万条测试数据 DELIMITER // mysql> CREATE PROCEDURE load_part_tab() begin declare v int default 0; while v < 8000000 do insert into part_tab values (v,‘testing partitions‘,adddate(‘1995-01-01‘,(rand(v)*36520) mod 3652)); set v = v + 1; end while; end; // Query OK, 1 row affected (8 min 17.75 sec) mysql> insert into no_part_tab select * from part_tab; Query OK, 8000000 rows affected (51.59 sec) Records: 8000000 Duplicates: 0 Warnings: 0 * 测试SQL性能 mysql> select count(*) from part_tab where c3 > date ‘1995-01-01‘ and c3 < date ‘1995-12-31‘; +----------+ | count(*) | +----------+ | 795181 | +----------+ 1 row in set (0.55 sec) mysql> select count(*) from no_part_tab where c3 > date ‘1995-01-01‘ and c3 < date ‘1995-12-31‘; +----------+ | count(*) | +----------+ | 795181 | +----------+ 1 row in set (4.69 sec) 结果表明分区表比未分区表的执行时间少90%。 * 通过explain语句来分析执行情况 mysql > explain select count(*) from no_part_tab where c3 > date ‘1995-01-01‘ and c3 < date ‘1995-12-31‘G /* 结尾的G使得mysql的输出改为列模式 */ *************************** 1. row *************************** id: 1 select_type: SIMPLE table: no_part_tab type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 8000000 Extra: Using where 1 row in set (0.00 sec) mysql> explain select count(*) from part_tab where c3 > date ‘1995-01-01‘ and c3 < date ‘1995-12-31‘G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: part_tab type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 798458 Extra: Using where 1 row in set (0.00 sec) explain语句显示了SQL查询要处理的记录数目 * 试验创建索引后情况 mysql> create index idx_of_c3 on no_part_tab (c3); Query OK, 8000000 rows affected (1 min 18.08 sec) Records: 8000000 Duplicates: 0 Warnings: 0 mysql> create index idx_of_c3 on part_tab (c3); Query OK, 8000000 rows affected (1 min 19.19 sec) Records: 8000000 Duplicates: 0 Warnings: 0 创建索引后的数据库文件大小列表: 2008-05-24 09:23 8,608 no_part_tab.frm 2008-05-24 09:24 255,999,996 no_part_tab.MYD 2008-05-24 09:24 81,611,776 no_part_tab.MYI 2008-05-24 09:25 0 part_tab#P#p0.MYD 2008-05-24 09:26 1,024 part_tab#P#p0.MYI 2008-05-24 09:26 25,550,656 part_tab#P#p1.MYD 2008-05-24 09:26 8,148,992 part_tab#P#p1.MYI 2008-05-24 09:26 25,620,192 part_tab#P#p10.MYD 2008-05-24 09:26 8,170,496 part_tab#P#p10.MYI 2008-05-24 09:25 0 part_tab#P#p11.MYD 2008-05-24 09:26 1,024 part_tab#P#p11.MYI 2008-05-24 09:26 25,656,512 part_tab#P#p2.MYD 2008-05-24 09:26 8,181,760 part_tab#P#p2.MYI 2008-05-24 09:26 25,586,880 part_tab#P#p3.MYD 2008-05-24 09:26 8,160,256 part_tab#P#p3.MYI 2008-05-24 09:26 25,585,696 part_tab#P#p4.MYD 2008-05-24 09:26 8,159,232 part_tab#P#p4.MYI 2008-05-24 09:26 25,585,216 part_tab#P#p5.MYD 2008-05-24 09:26 8,159,232 part_tab#P#p5.MYI 2008-05-24 09:26 25,655,740 part_tab#P#p6.MYD 2008-05-24 09:26 8,181,760 part_tab#P#p6.MYI 2008-05-24 09:26 25,586,528 part_tab#P#p7.MYD 2008-05-24 09:26 8,160,256 part_tab#P#p7.MYI 2008-05-24 09:26 25,586,752 part_tab#P#p8.MYD 2008-05-24 09:26 8,160,256 part_tab#P#p8.MYI 2008-05-24 09:26 25,585,824 part_tab#P#p9.MYD 2008-05-24 09:26 8,159,232 part_tab#P#p9.MYI 2008-05-24 09:25 8,608 part_tab.frm 2008-05-24 09:25 68 part_tab.par * 再次测试SQL性能 mysql> select count(*) from no_part_tab where c3 > date ‘1995-01-01‘ and c3 < date ‘1995-12-31‘; +----------+ | count(*) | +----------+ | 795181 | +----------+ 1 row in set (2.42 sec) /* 为原来4.69 sec 的51%*/ 重启mysql ( net stop mysql, net start mysql)后,查询时间降为0.89 sec,几乎与分区表相同。 mysql> select count(*) from part_tab where c3 > date ‘1995-01-01‘ and c3 < date ‘1995-12-31‘; +----------+ | count(*) | +----------+ | 795181 | +----------+ 1 row in set (0.86 sec) * 更进一步的试验 ** 增加日期范围 mysql> select count(*) from no_part_tab where c3 > date ‘1995-01-01‘ and c3 < date ‘1997-12-31‘; +----------+ | count(*) | +----------+ | 2396524 | +----------+ 1 row in set (5.42 sec) mysql> select count(*) from part_tab where c3 > date ‘1995-01-01‘ and c3 < date ‘1997-12-31‘; +----------+ | count(*) | +----------+ | 2396524 | +----------+ 1 row in set (2.63 sec) ** 增加未索引字段查询 mysql> select count(*) from part_tab where c3 > date ‘1995-01-01‘ and c3 < date ‘1996-12-31‘ and c2=‘hello‘; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (0.75 sec) mysql> select count(*) from no_part_tab where c3 > date ‘1995-01-01‘ and c3 < date ‘1996-12-31‘ and c2=‘hello‘; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (11.52 sec) 删除老数据,分区表的速度更快: MySQL [Mytestdb]> alter table part_tab drop PARTITION p1; 速度比delete删除快很多; = 初步结论 = * 分区和未分区占用文件空间大致相同 (数据和索引文件) * 如果查询语句中有未建立索引字段,分区时间远远优于未分区时间 * 如果查询语句中字段建立了索引,分区和未分区的差别缩小,分区略优于未分区。 = 最终结论 = * 对于大数据量,建议使用分区功能。 * 去除不必要的字段 * 根据手册, 增加myisam_max_sort_file_size 会增加分区性能 ***************************************** 其他类型 ********************************************* [分区命令详解] = 分区例子 = * RANGE 类型 CREATE TABLE users ( uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, name VARCHAR(30) NOT NULL DEFAULT ‘‘, email VARCHAR(30) NOT NULL DEFAULT ‘‘ ) PARTITION BY RANGE (uid) ( PARTITION p0 VALUES LESS THAN (3000000) DATA DIRECTORY = ‘/data0/data‘ INDEX DIRECTORY = ‘/data1/idx‘, PARTITION p1 VALUES LESS THAN (6000000) DATA DIRECTORY = ‘/data2/data‘ INDEX DIRECTORY = ‘/data3/idx‘, PARTITION p2 VALUES LESS THAN (9000000) DATA DIRECTORY = ‘/data4/data‘ INDEX DIRECTORY = ‘/data5/idx‘, PARTITION p3 VALUES LESS THAN MAXVALUE DATA DIRECTORY = ‘/data6/data‘ INDEX DIRECTORY = ‘/data7/idx‘ ); 在这里,将用户表分成4个分区,以每300万条记录为界限,每个分区都有自己独立的数据、索引文件的存放目录,与此同时,这些目录所在的物理磁盘分区可能也都是完全独立的,可以提高磁盘IO吞吐量。
以上是关于详解亿级大数据表的几种建立分区表的方式的主要内容,如果未能解决你的问题,请参考以下文章
[生产库实战] 如何使用触发器对生产库上亿级大表进行实时同步