目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练
Posted allen-rg
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练相关的知识,希望对你有一定的参考价值。
将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练。
import xml.etree.ElementTree as ET import numpy as np import os import tensorflow as tf from PIL import Image classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] def convert(size, box): dw = 1./size[0] dh = 1./size[1] x = (box[0] + box[1])/2.0 y = (box[2] + box[3])/2.0 w = box[1] - box[0] h = box[3] - box[2] x = x*dw w = w*dw y = y*dh h = h*dh return [x, y, w, h] def convert_annotation(image_id): in_file = open(‘F:/xml/%s.xml‘%(image_id)) tree = ET.parse(in_file) root = tree.getroot() size = root.find(‘size‘) w = int(size.find(‘width‘).text) h = int(size.find(‘height‘).text) bboxes = [] for i, obj in enumerate(root.iter(‘object‘)): if i > 29: break difficult = obj.find(‘difficult‘).text cls = obj.find(‘name‘).text if cls not in classes or int(difficult) == 1: continue cls_id = classes.index(cls) xmlbox = obj.find(‘bndbox‘) b = (float(xmlbox.find(‘xmin‘).text), float(xmlbox.find(‘xmax‘).text), float(xmlbox.find(‘ymin‘).text), float(xmlbox.find(‘ymax‘).text)) bb = convert((w, h), b) + [cls_id] bboxes.extend(bb) if len(bboxes) < 30*5: bboxes = bboxes + [0, 0, 0, 0, 0]*(30-int(len(bboxes)/5)) return np.array(bboxes, dtype=np.float32).flatten().tolist() def convert_img(image_id): image = Image.open(‘F:/snow leopard/test_im/%s.jpg‘ % (image_id)) resized_image = image.resize((416, 416), Image.BICUBIC) image_data = np.array(resized_image, dtype=‘float32‘)/255 img_raw = image_data.tobytes() return img_raw filename = os.path.join(‘test‘+‘.tfrecords‘) writer = tf.python_io.TFRecordWriter(filename) # image_ids = open(‘F:/snow leopard/test_im/%s.txt‘ % ( # year, year, image_set)).read().strip().split() image_ids = os.listdir(‘F:/snow leopard/test_im/‘) # print(filename) for image_id in image_ids: print (image_id) image_id = image_id.split(‘.‘)[0] print (image_id) xywhc = convert_annotation(image_id) img_raw = convert_img(image_id) example = tf.train.Example(features=tf.train.Features(feature={ ‘xywhc‘: tf.train.Feature(float_list=tf.train.FloatList(value=xywhc)), ‘img‘: tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])), })) writer.write(example.SerializeToString()) writer.close()
Python读取文件夹下图片的两种方法:
import os imagelist = os.listdir(‘./images/‘) #读取images文件夹下所有文件的名字
import glob imagelist= sorted(glob.glob(‘./images/‘ + ‘frame_*.png‘)) #读取带有相同关键字的图片名字,比上一中方法好
参考:
https://blog.csdn.net/CV_YOU/article/details/80778392
https://github.com/raytroop/YOLOv3_tf
以上是关于目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练的主要内容,如果未能解决你的问题,请参考以下文章
[数据集][VOC][目标检测]输电线异物数据集目标检测可用yolo训练-4165张介绍
[数据集][VOC][目标检测]河道垃圾水面漂浮物数据集目标检测可用yolo训练-1304张介绍