神经网络搭建八股

Posted ch-forever

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了神经网络搭建八股相关的知识,希望对你有一定的参考价值。

一、生成数据集

generator.py

#导入模块,生成模拟数据集
import numpy as np
import matplotlib.pyplot as plt


seed = 2


def generator():
    # 基于seed产生随机数
    rdm = np.random.RandomState(seed)
    # 随机数返回300行2列的矩阵,表示300组坐标点(x0,x1)作为输入数据集
    X = rdm.randn(300, 2)
    # 从X这个300行2列的矩阵中取出一行,判断如果两个坐标平方和小于2,给Yield赋值1,其余赋值0
    # Y_作为输入数据集的标签(正确答案)
    Y_ = [int(x0*x0+x1*x1 < 2) for (x0, x1) in X]
    #  遍历Y中每个元素,1赋值'red',其余赋值'blue',这样便于可视化观察
    Y_c =[['red' if y else 'blue'] for y in Y_]
    # 对数据集X和标签Y进行形状整理,第一个元素为-1表示跟随第二列计算;
    # 第二个元素表示多少列,可见X为两列,Y为1列
    X = np.vstack(X).reshape(-1, 2)
    Y_ = np.vstack(Y_).reshape(-1, 1)
    return X, Y_, Y_c


if __name__ == '__main__':
    X, Y, Y_c = generator()
    X = np.array(X)
    Y = np.array(Y)
    Y_c = np.array(Y_c)
    print("X:", X.shape)
    print("Y:", Y.shape)
    print("Y_c:", Y_c.shape)
    print("show_over")

    # squeeze函数:从数组的形状中删除单维度条目,即把shape中为1的维度去掉
    plt.scatter(X[:, 0], X[:, 1], c=np.squeeze(Y_c))
    plt.show()

输出结果:

技术分享图片

二、前向传播

前向传播就是搭建网络,设计网络结构(forward.py)

# coding:utf-8
# 导入模块,生成模拟数据集
import tensorflow as tf
from tensorflowuse.formalsteps.generator import generator
import numpy as np


# 定义网络输入、参数和输出,定义前向传播过程
def get_weight(shape, regularizer):
    W = tf.Variable(tf.random_normal(shape), dtype=tf.float32)

    tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(W))
    return W

# 对参数 w 设定
def get_bias(shape):
    b = tf.Variable(tf.constant(0.01, shape=shape))
    return b


def forward(X, regularizer):
    W1 = get_weight([2, 11], regularizer)
    b1 = get_bias([11])
    y1 = tf.nn.relu(tf.matmul(X, W1) + b1)

    W2 = get_weight([11, 1], regularizer)
    b2 = get_bias([1])
    y = tf.matmul(y1, W2) + b2  # 输出层不过激活

    return y


if __name__ == '__main__':
    X, Y, Y_c = generator()
    X = np.array(X)
    Y = np.array(Y)
    Y_c = np.array(Y_c)
    print("X:", X.shape)
    print("Y:", Y.shape)
    print("Y_c:", Y_c.shape)

输出结果:

X: (300, 2)
Y: (300, 1)
Y_c: (300, 1)

函数 forward():完成网络结构的设计,从输入到输出搭建完整的网络结构,实现前向传播过程。该函数中,参数 x 为输入,regularizer 为正则化权重,返回值为预测或分类结果y。

三、反向传播

反向传播就是训练网络,优化网络参数(backward.py)

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflowuse.formalsteps import generator, forward


STEPS = 40000
BATCH_SIZE = 32
# LEARNING_RATE_BASE = 0.001
# LEARNING_RATE_BASE = 1.0
LEARNING_RATE_BASE = .01
LEARNING_RATE_DECAY = 0.99
REGULARIZER = 0.01


# After 39800 steps, loss_v is 0.089410:
# 反向传播就是训练网络,优化网络参数
def backward():
    x = tf.placeholder(tf.float32, shape=(None, 2))
    y_ = tf.placeholder(tf.float32, shape=(None, 1))
    X, Y_, Y_c = generator.generator()

    pred_y = forward.forward(x, REGULARIZER)
    global_step = tf.Variable(0, trainable=False)
    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE,
        global_step,
        300/BATCH_SIZE,
        LEARNING_RATE_DECAY,
        staircase=True)
    # 定义损失函数
    loss_mse = tf.reduce_mean(tf.square(pred_y-y_))
    # 带正则化的损失函数
    loss_total = loss_mse + tf.add_n(tf.get_collection('losses'))

    # 定义反向传播方法:包括正则化
    train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss_total)

    with tf.Session() as sess:
        init_op = tf.global_variables_initializer()
        sess.run(init_op)
        for i in range(STEPS):
            start = (i*BATCH_SIZE) % 300
            end = start + BATCH_SIZE
            sess.run(train_step, feed_dict={x: X[start:end], y_: Y_[start:end]})
            if i % 200 == 0:
                loss_v = sess.run(loss_total, feed_dict={x: X, y_: Y_})
                print("After %d steps, loss_v is %f:" % (i, loss_v))
            # 收集规定区域内所有的网格坐标点
            # 找到规定区域以步长为分辨率的行列网格坐标点
            # xx, yy = np.mgrid[ 起: : 止: : 步长 ,  起: : 止: : 步长] ]
            # xx, yy = np.mgrid[-3:3:0.1, -3:3:0.1]
            # 收集规定区域内所有的网格坐标点
            # grid = np.c_[xx.ravel(), yy.ravel()]
            # probs = sess.run(pred_y, feed_dict={x: grid})
            # probs = probs.reshape(xx.shape)

        # plt.scatter(X[:, 0], X[:, 1], c=np.squeeze(Y_c))
        # # plt.contour(xx, yy, probs, levels=[.5])
        # plt.show()

# After 39800 steps, loss_v is 0.064519:
if __name__ == '__main__':
    backward()

get_weight()对参数 w 设定。该函数中,参数 shape 表示参数 w 的形状,regularizer表示正则化权重,返回值为参数 w。其中,tf.variable()给 w 赋初值,tf.add_to_collection()表示将参数 w 正则化损失加到总损失 losses 中。
注意:正则化参数的大小对于训练过程有很大的影响。

以上是关于神经网络搭建八股的主要内容,如果未能解决你的问题,请参考以下文章

4-网络八股扩展北京大学TensorFlow2.0

3-神经网络八股北京大学TensorFlow2.0

TensorFlow基础入门--基础总结(TensorFlow框架基础)

《面试八股文》之网络19卷

在PaddlePaddle中的Notebook代码片段

八股文——计算机网络