题解-bzoj4061 CERC-2012Farm and Factory
Posted penth
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了题解-bzoj4061 CERC-2012Farm and Factory相关的知识,希望对你有一定的参考价值。
Problem
Please contact [email protected]!
题意概要:给定(n)点(m)边无向图,设定两个起点为(1,2),现要求在图中增加一个点,并将这个点与其他(n)个点每个点连一条边(共(n)条),要求连完边后在新的图中从原来(n)个点到任一起点的最短路不一定经过新点,最小化连的(n)条边的权值和
Solution
超好玩的一道题
设(a_i,b_i)分别表示从(1,2)出发到达(i)节点的最短路,设新增节点为(t),(d_i)表示从(t)到(i)所连的边
发现由于最短路不能经过(t),所以
(d_1+d_igeq a_i\d_2+d_igeq b_i)
即(d_igeq max(a_i-d_1,b_i-d_2))
假定已经确定了(d_i),希望(d_1)最小,发现若(d_1> a_i+d_i)和(d_1=a_i+d_i)是等价的,因为即便(d_1)再大,在考虑后面的点时(a_i+d_i)会代替(d_1)来计算后面的限制,所以有(d_1leq a_i+d_i),同理可得
(d_1leq a_i+d_i\d_2leq b_i+d_i)
综上,可得
(d_igeq max(a_i-d_1,d_1-a_i,b_i-d_2,d_2-b_i)=max(|a_i-d_1|,|b_i-d_2|))
然后要最小化(sum d_i),假定已经确定(d_1,d_2),则每个(d_i)一定取不等式的等号时最优,即要求最小化的式子为(sum max(|a_i-d_1|,|b_i-d_2|))
现在只需要确定(d_1,d_2)了。将这个东西放在二维平面上,即有(n)个点((a_i,b_i)),发现上面的式子就是((d_1,d_2))关于(n)个点的切比雪夫距离
问题转化为确定一个点((d_1,d_2))使得这个点到(n)个点的切比雪夫距离和最小。这是个经典问题,可以将坐标轴旋转(45°)将切比雪夫距离转化为曼哈顿距离
最小化一个点到(n)个点的曼哈顿距离之和可以将横纵坐标拆开分别取最小,即横坐标取(n)个点横坐标的中位数,纵坐标取(n)个点纵坐标的中位数
Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline void read(int&x){
char c11=getchar();x=0;while(!isdigit(c11))c11=getchar();
while(isdigit(c11))x=x*10+c11-‘0‘,c11=getchar();
}
const int N=101000,M=301000;
const ll inf = 0x3f3f3f3f3f3f3f3f;
struct Edge{int v,nxt,w;}a[M+M];
ll A[N],B[N];int head[N];
int n,m,_;
namespace SpFa{
int top;
struct node{
int x;ll v;
inline node(){}
inline node(const int&X,const ll&V):x(X),v(V){}
}h[M];
inline void push(node nw){
h[++top]=nw;
int pp=top;
while(pp>1&&h[pp].v<h[pp>>1].v)
swap(h[pp],h[pp>>1]),pp>>=1;
}
inline void pop(){
int pp=1;
h[1]=h[top--];
while(((pp<<1)<=top&&h[pp].v>h[pp<<1].v)||((pp<<1|1)<=top&&h[pp].v>h[pp<<1|1].v)){
pp<<=1;
if(h[pp].v>h[pp|1].v)pp|=1;
swap(h[pp],h[pp>>1]);
}
}
void main(int s,ll*dis){
for(int i=1;i<=n;++i)dis[i]=inf;
h[top=1]=node(s,0ll),dis[s]=0;
node nw;
while(top){
nw=h[1];pop();
for(int i=head[nw.x];i;i=a[i].nxt)
if(dis[a[i].v]>dis[nw.x]+a[i].w){
dis[a[i].v]=dis[nw.x]+a[i].w;
push(node(a[i].v,dis[a[i].v]));
}
}
}
}
void init(){
read(n),read(m),_=0;
for(int i=n;i;--i)head[i]=0;
for(int i=1,u,v,w;i<=m;++i){
read(u),read(v),read(w);
a[++_].v=v,a[_].w=w,a[_].nxt=head[u],head[u]=_;
a[++_].v=u,a[_].w=w,a[_].nxt=head[v],head[v]=_;
}
}
void work(){
ll x,y,Ans=0ll;
for(int i=n;i;--i)
x=A[i],y=B[i],A[i]=x+y,B[i]=x-y;
sort(A+1,A+n+1);sort(B+1,B+n+1);
x=A[n+1>>1],y=B[n+1>>1];
for(int i=n;i;--i)
Ans+=abs(A[i]-x)+abs(B[i]-y);
printf("%.9lf
",0.5*Ans/n);
}
int main(){
int T;read(T);
while(T--){
init();
SpFa::main(1,A);
SpFa::main(2,B);
work();
}return 0;
}
以上是关于题解-bzoj4061 CERC-2012Farm and Factory的主要内容,如果未能解决你的问题,请参考以下文章
BZOJ 4059 [Cerc2012]Non-boring sequences(启发式分治)
BZOJ4059[Cerc2012]Non-boring sequences 分治
bzoj4059 [Cerc2012]Non-boring sequences
bzoj1621[Usaco2008 Open]Roads Around The Farm分岔路口*