[Algorithms] Using Dynamic Programming to Solve longest common subsequence problem

Posted answer1215

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[Algorithms] Using Dynamic Programming to Solve longest common subsequence problem相关的知识,希望对你有一定的参考价值。

Let‘s say we have two strings:

str1 = ‘ACDEB‘

str2 = ‘AEBC‘

We need to find the longest common subsequence, which in this case should be ‘AEB‘.

 

Using dynamic programming, we want to compare by char not by whole words.

  • we need memo to keep tracking the result which have already been calculated
    •   memo is 2d array, in this case is 5 * 4 array.
  • It devided problem into two parts
    •   If the char at the given indexs for both strings are the same, for example, ‘A‘ for str1 & str2, then we consider 
‘A‘ + LSC(str1, str2, i1 + 1, i2 + 1)
    • If the char at the given indexs are not the same, we pick max length between LCB(‘DEB‘, ‘EBC‘) & LCB(‘CDEB‘, ‘BC‘),  we pick
Max {
   LCS(‘DEB‘, ‘EBC‘),
   LCS(‘CDEB‘, ‘BC‘)
}

Bacislly for the str1 = ‘CDEB‘ str2 = ‘EBC‘, the first char is not the same, one is ‘C‘, another is ‘E‘, then we devide into tow cases and get the longer one. The way to devide is cutting ‘C‘ from str1 get LCS(‘DEB‘, ‘EBC‘), and cutting ‘E‘ from str2 get LCS(‘CDEB‘, ‘BC‘).

 /**
 * FIND THE LONGEST COMMON SEQUENCES BY USING DYNAMICE PROGRAMMING
 *
 * @params:
 * str1: string
 * str2: string
 * i1: number
 * i2: number
 * memo: array []
 *
 * TC: O(L*M) << O(2^(L*M))
 */

function LCS(str1, str2) {
    const memo = [...Array(str1.length)].map(e => Array(str2.length));
  
    /**
     * @return longest common sequence string
     */
    function helper(str1, str2, i1, i2, memo) {
      console.log(`str1, str2, ${i1}, ${i2}`);
      // if the input string is empty
      if (str1.length === i1 || str2.length === i2) {
        return "";
      }
      // check the memo, whether it contians the value
      if (memo[i1][i2] !== undefined) {
        return memo[i1][i2];
      }
      // if the first latter is the same
      // "A" + LCS(CDEB, EBC)
      if (str1[i1] === str2[i2]) {
        memo[i1][i2] = str1[i1] + helper(str1, str2, i1 + 1, i2 + 1, memo);
        return memo[i1][i2];
      }
  
      // Max { "C" + LCS(DEB, EBC), "E" + LCB(CDEB, BC) }
      let result;
      const resultA = helper(str1, str2, i1 + 1, i2, memo); // L
      const resultB = helper(str1, str2, i1, i2 + 1, memo); // M
  
      if (resultA.length > resultB.length) {
        result = resultA;
      } else {
        result = resultB;
      }
  
      memo[i1][i2] = result;
      return result;
    }
  
    return {
      result: helper(str1, str2, 0, 0, memo),
      memo
    };
  }
  
  //const str1 = "I am current working in Finland @Nordea",
  //str2 = "I am currently working in Finland at Nordea";
  
  const str1 = "ACDEB",
    str2 = "GAEBC";
  
  const { result, memo } = LCS(str1, str2);
  console.log(
    `
     ${str1}  
     ${str2}
     s longest common sequence is 
     "${result === "" ? "Empty!!!" : result}"
    `
  );
  
  console.log(memo);
  

 

 

Source, Code

以上是关于[Algorithms] Using Dynamic Programming to Solve longest common subsequence problem的主要内容,如果未能解决你的问题,请参考以下文章

[Algorithms] Binary Search Algorithm using TypeScript

[Algorithms] Using Dynamic Programming to Solve longest common subsequence problem

[Algorithms] Sort an Array with a Nested for Loop using Insertion Sort in JavaScript

论文阅读|浅读 RIDεRs:Role Discovery in Graphs using Global Features: Algorithms, Applications...

论文阅读 | FIESTA: Fast IdEntification of State-of-The-Art models using adaptive bandit algorithms

论文总结Damage-Map Estimation Using UAV Images and Deep Learning Algorithms for DMS