「Luogu P2508」[HAOI2008]圆上的整点 解题报告

Posted hovny

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了「Luogu P2508」[HAOI2008]圆上的整点 解题报告相关的知识,希望对你有一定的参考价值。

题面

给定圆的半径,求圆上整点数

这是一道很Nice的数学题!超爱!好吧,由于这道题,我去Study了一下复数(complex number)复杂的数

真棒!!!

有兴趣的戳这里!!!(huge o)

思路:

高斯素数的原理,将整数分解质因数后,再把每个质因数分解成高斯素数,对于质数4n+1,它可以有效的分解成高斯素数,而质数4n+3不能,因为3无法分解为高斯素数,所以当一个数有奇数个3因子时,这个圆上没有整点,而3的个数为偶数时,由于能分成两组配对,所以有整点,但3对Ans的影响为0,因为x*1=x,因此只要不变就行了,当由于2的高斯素数表示为1-i*1+i,所以2的个数对Ans无影响

对于25如下:

[ large 25=5 imes 5 ]

[ large 25=(2-i)(2+i)(2-i)(2+i) ]

所以:

Left Right
(large 1) (large 1)
(large 2-i) (large 2+i)
(large 2-i) (large 2+i)
(large =3-4i) (large =3+4i)

这是一种情况(large (3,-4))

Left Right
(large 2-i) (large 2-i)
(large 2+i) (large 2+i)
(large =5) (large =5)

这是一种情况(large (5,0))

Left Right
(large 2+i) (large 2+i)
(large 2+i) (large 2+i)
(large =3+4i) (large =3-4i)

这是一种情况(large (3,-4))

而对于上述

(large imes) (large 3-4i) (large 5) (large 3+4i)
(large -1) (large -1+4i) (-5) (large -3-4i)
(large i) (large 4+3i) (large 5i) (large -4+3i)
(large -i) (large -4-3i) (large -5i) (large 4-3i)

所以一共有点对12

那么高斯素数怎么表示点呢?

它只要一个数,就可以表示点的坐标,RT:

技术分享图片

Code:

#include<bits/stdc++.h>
#define N 10000010
#define ll long long
using namespace std;
ll n,m,res,ans=4;
ll a[N],t,T;
ll p[N];
ll s[N];
bool b[N];
int main()
{
    ll i,j;
    scanf("%lld",&n);
    m=n;
    for(i=2;i*i<=m;i++)
    {
        if(!b[i])
        {
            a[++T]=i;
            if(m%i==0)
            {
                p[++t]=i;
                while(m%i==0)
                {
                    m/=i;
                    s[t]++;
                }
            }
        }
        for(j=1;j<=T;j++)
        {
            if(a[j]*i*i*a[j]>m)
                continue;
            b[a[j]*i]=1;
            if(i%a[j]==0)
                continue;
        }
    }
    if(m>1)
    {
        p[++t]=m;
        s[t]=1;
    }
    for(i=1;i<=t;i++)
        if((p[i]-1)%4==0)
            ans*=(2*s[i]+1);
    printf("%lld",ans);
    return 0;
}

以上是关于「Luogu P2508」[HAOI2008]圆上的整点 解题报告的主要内容,如果未能解决你的问题,请参考以下文章

luogu2508 [HAOI2008]圆上的整点

圆上的整点(未完成)

[HAOI2008]圆上的整点

1041: [HAOI2008]圆上的整点

BZOJ 1041 [HAOI2008]圆上的整点

[HAOI2008]圆上的整点