任务车间调度问题的混合整数规划模型
Posted leapms
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了任务车间调度问题的混合整数规划模型相关的知识,希望对你有一定的参考价值。
任务车间调度问题的混合整数规划模型
文献[1]的7.3节讲了一个任务车间调度问题。
一个车间生产套印纸张,分别套印蓝绿黄三种颜色。三种纸张根据需求分别在蓝、绿、黄三个机器上印刷,印刷时间如下表:
印制颜色 | 纸1 | 纸2 | 纸3 | |
机器1 | 蓝 | 45 | 20 | 12 |
机器2 | 绿 | 10 | 17 | |
机器3 | 黄 | 10 | 34 | 28 |
纸张需要满足下图所示的印制次序:
要求安排工艺调度(即安排纸张在各个机床上的加工时间)以使得总完成时间最短。
模型及求解
从上图可以读出纸张的印制次序为:
Paper 1: 1 --> 3
Paper 2: 2 --> 1 -->3
Paper 3: 3--> 1 --> 2
Paper 1 不需要在机器2上加工。为一致起见,设其在机器2上的加工时间为0,加工次序为3。得到下面的加工次序矩阵。
S={
1 3 2
2 1 3
3 1 2
}
设 T[i][j] 为纸张 j 在机器 i 上的加工时长。设 t[i][j] 为纸张 j 在机器 i 上的开始加工时刻。
模型的目标是极小化总完工时间tt:
min tt //(1)
显然tt必须大于等于三种纸张的各自完成时间:
tt >= t[S[j][3]][j]+T[S[j][3]][j] | j=1,...,3 //(2)
对任意纸张j和k, 如果 j<>k, 则他们在同一台机器上的加工时间不可冲突:
t[i][k] >= t[i][j] + T[i][j] 或 t[i][j] >= t[i][k] + T[i][k] | i=1,...,3;j=1,...,3;k=1,..,3;j<>k
上面是两个或约束,不可以直接写入混合线性规划的。解决办法是引入二值变量u[i][j][k]和大M,把上面的逻辑转换成两个联立约束:
t[i][k] >= t[i][j] + T[i][j] - M*u[i][j][k] | i=1,...,3;j=1,...,3;k=1,..,3;j<>k //(3)
t[i][j] >= t[i][k] + T[i][k] -M(1-u[i][j][k]) | i=1,...,3;j=1,...,3;k=1,..,3;j<>k //(4)
纸张需要满足加工次序约束:
t[S[j][k+1]][j] >= t[S[j][k]][j] + T[S[j][k]][j] |j=1,...,3; k=1,...,2 //(5)
完整的+Leapms模型:
min tt //(1) subject to //tt大于等于三种纸张的各自完成时间: tt >= t[S[j][3]][j]+T[S[j][3]][j] | j=1,...,3 //(2) //对任意纸张j和k,如果j<>k,则他们在同一台机器上的加工时间不能冲突: t[i][k] >= t[i][j] + T[i][j] - M*u[i][j][k] | i=1,...,3;j=1,...,3;k=1,..,3;j<>k //(3) t[i][j] >= t[i][k] + T[i][k] -M(1-u[i][j][k]) | i=1,...,3;j=1,...,3;k=1,..,3;j<>k //(4) //加工次序约束: t[S[j][k+1]][j] >= t[S[j][k]][j] + T[S[j][k]][j] |j=1,...,3; k=1,...,2 //(5) where M is a number T[i][j] is a number | i=1,...,3;j=1,...,3 S[i][j] is an integer | i=1,...,3;j=1,...,3 tt is a variable of nonnegative number t[i][j] is a variable of nonnegative number | i=1,...,3;j=1,...,3 u[i][j][k] is a variable of binary|i=1,...,3;j=1,...,3;k=1,..,3;j<>k data T={ 45 20 12 0 10 17 10 34 28 } S={ 1 3 2 2 1 3 3 1 2 } M=1000
求解过程
+Leapms>load Current directory is "ROOT". ......... jobshop.leap ......... please input the filename:jobshop ================================================================ 1: min tt //(1) 2: 3: subject to 4: 5: //tt大于等于三种纸张的各自完成时间: 6: tt >= t[S[j][3]][j]+T[S[j][3]][j] | j=1,...,3 //(2) 7: 8: //对任意纸张j和k,如果j<>k,则他们在同一台机器上的加工时间不能冲突: 9: t[i][k] >= t[i][j] + T[i][j] - M*u[i][j][k] | i=1,...,3;j=1,...,3;k=1,.. ,3;j<>k //(3) 10: t[i][j] >= t[i][k] + T[i][k] -M(1-u[i][j][k]) | i=1,...,3;j=1,...,3;k=1 ,..,3;j<>k //(4) 11: 12: //加工次序约束: 13: t[S[j][k+1]][j] >= t[S[j][k]][j] + T[S[j][k]][j] |j=1,...,3; k=1,...,2 //(5) 14: 15: where 16: M is a number 17: T[i][j] is a number | i=1,...,3;j=1,...,3 18: S[i][j] is an integer | i=1,...,3;j=1,...,3 19: tt is a variable of nonnegative number 20: t[i][j] is a variable of nonnegative number | i=1,...,3;j=1,...,3 21: u[i][j][k] is a variable of binary|i=1,...,3;j=1,...,3;k=1,..,3;j<>k 22: 23: data 24: 25: T={ 26: 45 20 12 27: 0 10 17 28: 10 34 28 29: } 30: 31: S={ 32: 1 3 2 33: 2 1 3 34: 3 1 2 35: } 36: M=1000 ================================================================ >>end of the file. Parsing model: 1D 2R 3V 4O 5C 6S 7End. .................................. number of variables=28 number of constraints=45 .................................. +Leapms>mip relexed_solution=64; number_of_nodes_branched=0; memindex=(2,2) The Problem is solved to optimal as an MIP. 找到整数规划的最优解.非零变量值和最优目标值如下: ......... t1_1* =42 t1_2* =10 t1_3* =30 t2_1* =97 t2_3* =42 t3_1* =87 t3_2* =30 t3_3* =2 tt* =97 u1_1_2* =1 u1_1_3* =1 u1_3_2* =1 u2_1_2* =1 u2_1_3* =1 u2_3_2* =1 u3_1_2* =1 u3_1_3* =1 u3_2_3* =1 ......... Objective*=97 ......... +Leapms>
求解结果
+Leapms>mip relexed_solution=64; number_of_nodes_branched=0; memindex=(2,2) The Problem is solved to optimal as an MIP. 找到整数规划的最优解.非零变量值和最优目标值如下: ......... t1_1* =42 t1_2* =10 t1_3* =30 t2_1* =97 t2_3* =42 t3_1* =87 t3_2* =30 t3_3* =2 tt* =97 u1_1_2* =1 u1_1_3* =1 u1_3_2* =1 u2_1_2* =1 u2_1_3* =1 u2_3_2* =1 u3_1_2* =1 u3_1_3* =1 u3_2_3* =1 ......... Objective*=97 ......... +Leapms>
反向生成Latex数学概念模型
+Leapms提供从+Leapms模型向Latex数学概念模型的转换。
当模型调整和测试完毕,使用+Leapms的latex命令可生成本问题的如下数学概念模型:
参考文献
[1] Christelle Guéret, Christian Prins, Marc Sevaux. Applications of optimization with Xpress-MP (Translated and revised by Susanne Heipcke). Dash Optimization Ltd. 2000
以上是关于任务车间调度问题的混合整数规划模型的主要内容,如果未能解决你的问题,请参考以下文章
车间调度基于遗传算法求解混合流水车间调度最优问题matlab源码
用Python实现基于遗传算法(GA)求解混合流水车间调度问题(HFSP)
车间调度基于matlab混合蛙跳算法 (SFLA) 求解简单调度问题含Matlab源码 2247期