MQ入门总结消息队列概念和使用场景
Posted zhanghongfei
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MQ入门总结消息队列概念和使用场景相关的知识,希望对你有一定的参考价值。
一、消息队列
消息即是信息的载体。为了让消息发送者和消息接收者都能够明白消息所承载的信息(消息发送者需要知道如何构造消息;消息接收者需要知道如何解析消息),它们就需要按照一种统一的格式描述消息,这种统一的格式称之为消息协议。所以,有效的消息一定具有某一种格式;而没有格式的消息是没有意义的。
而消息从发送者到接收者的方式也有两种。一种我们可以称为即时消息通讯,也就是说消息从一端发出后(消息发送者)立即就可以达到另一端(消息接收者),这种方式的具体实现就是我们已经介绍过的RPC(当然单纯的http通讯也满足这个定义);另一种方式称为延迟消息通讯,即消息从某一端发出后,首先进入一个容器进行临时存储,当达到某种条件后,再由这个容器发送给另一端。 这个容器的一种具体实现就是消息队列。
二、消息队列的应用场景
以下介绍消息队列在实际应用中常用的使用场景。异步处理,应用解耦,流量削锋和消息通讯四个场景。
2.1异步处理
场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种1.串行的方式;2.并行方式。
(1)串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端。
(2)并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间。
假设三个业务节点每个使用50毫秒钟,不考虑网络等其他开销,则串行方式的时间是150毫秒,并行的时间可能是100毫秒。
因为CPU在单位时间内处理的请求数是一定的,假设CPU1秒内吞吐量是100次。则串行方式1秒内CPU可处理的请求量是7次(1000/150)。并行方式处理的请求量是10次(1000/100)。
小结:如以上案例描述,传统的方式系统的性能(并发量,吞吐量,响应时间)会有瓶颈。如何解决这个问题呢?
引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:
按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了两倍。
2.2应用解耦
场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。如下图:
传统模式的缺点:
1) 假如库存系统无法访问,则订单减库存将失败,从而导致订单失败;
2) 订单系统与库存系统耦合;
如何解决以上问题呢?引入应用消息队列后的方案,如下图:
- 订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功。
- 库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作。
- 假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦。
2.3流量削锋
流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛。
应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。
- 可以控制活动的人数;
- 可以缓解短时间内高流量压垮应用;
- 用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面;
- 秒杀业务根据消息队列中的请求信息,再做后续处理。
2.4日志处理
日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解决大量日志传输的问题。架构简化如下:
- 日志采集客户端,负责日志数据采集,定时写受写入Kafka队列;
- Kafka消息队列,负责日志数据的接收,存储和转发;
- 日志处理应用:订阅并消费kafka队列中的日志数据;
以下是新浪kafka日志处理应用案例:转自(新浪技术分享:我们如何扛下32亿条实时日志的分析处理)
(1)Kafka:接收用户日志的消息队列。
(2)Logstash:做日志解析,统一成JSON输出给Elasticsearch。
(3)Elasticsearch:实时日志分析服务的核心技术,一个schemaless,实时的数据存储服务,通过index组织数据,兼具强大的搜索和统计功能。
(4)Kibana:基于Elasticsearch的数据可视化组件,超强的数据可视化能力是众多公司选择ELK stack的重要原因。
2.5消息通讯
消息通讯是指,消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等。
点对点通讯:
客户端A和客户端B使用同一队列,进行消息通讯。
聊天室通讯:
客户端A,客户端B,客户端N订阅同一主题,进行消息发布和接收。实现类似聊天室效果。
以上实际是消息队列的两种消息模式,点对点或发布订阅模式。
三、消息模式
1. 点对点模式和发布订阅模式:是否可以重复消费
P2P模式:
P2P模式包含三个角色:消息队列(Queue),发送者(Sender),接收者(Receiver)。每个消息都被发送到一个特定的队列,接收者从队列中获取消息。队列保留着消息,直到他们被消费或超时。
P2P的特点
- 每个消息只有一个消费者(Consumer)(即一旦被消费,消息就不再在消息队列中)
- 发送者和接收者之间在时间上没有依赖性,也就是说当发送者发送了消息之后,不管接收者有没有正在运行,它不会影响到消息被发送到队列
- 接收者在成功接收消息之后需向队列应答成功
如果希望发送的每个消息都会被成功处理的话,那么需要P2P模式。、
Pub/sub模式:
包含三个角色:主题(Topic),发布者(Publisher),订阅者(Subscriber) 。多个发布者将消息发送到Topic,系统将这些消息传递给多个订阅者。
Pub/Sub的特点
- 每个消息可以有多个消费者
- 发布者和订阅者之间有时间上的依赖性。针对某个主题(Topic)的订阅者,它必须创建一个订阅者之后,才能消费发布者的消息。
- 为了消费消息,订阅者必须保持运行的状态。
为了缓和这样严格的时间相关性,JMS允许订阅者创建一个可持久化的订阅。这样,即使订阅者没有被激活(运行),它也能接收到发布者的消息。
如果希望发送的消息可以不被做任何处理、或者只被一个消息者处理、或者可以被多个消费者处理的话,那么可以采用Pub/Sub模型。
2. 推模式和拉模式:消息的更新者
推(push)模式是一种基于C/S机制、由服务器主动将信息送到客户器的技术。
1. 在push模式应用中,服务器把信息送给客户器之前,并没有明显的客户请求。push事务由服务器发起。push模式可以让信息主动、快速地寻找用户/客户器,信息的主动性和实时性比较好。但精确性较差,可能推送的信息并不一定满足客户的需求。
2. 推送模式不能保证能把信息送到客户器,因为推模式采用了广播机制,如果客户器正好联网并且和服务器在同一个频道上,推送模式才是有效的。
3. push模式无法跟踪状态,采用了开环控制模式,没有用户反馈信息。在实际应用中,由客户器向服务器发送一个申请,并把自己的地址(如IP、port)告知服务器,然后服务器就源源不断地把信息推送到指定地址。在多媒体信息广播中也采用了推模式。
拉(pull)模式与推模式相反,是由客户器主动发起的事务。
服务器把自己所拥有的信息放在指定地址(如IP、port),客户器向指定地址发送请求,把自己需要的资源“拉”回来。不仅可以准确获取自己需要的资源,还可以及时把客户端的状态反馈给服务器。
本文并未引入新的内容,只是总结和归纳了前期学习中涉及到消息队列的内容,消息队列之前已经间歇、零散的学到了一些,借着MQ入门总结这一系列的文章重新系统学习一下,如是。
以上是关于MQ入门总结消息队列概念和使用场景的主要内容,如果未能解决你的问题,请参考以下文章