来源网址:http://blog.csdn.net/w352986331qq/article/details/78639233
缺失值处理方法综述
缺失值是指粗糙数据中由于缺少信息而造成的数据的聚类、分组、删失或截断。它指的是现有数据集中某个或某些属性的值是不完全的。缺失值的产生的原因多种多样,主要分为机械原因和人为原因。
机械原因是由于机械原因导致的数据收集或保存的失败造成的数据缺失,比如数据存储的失败,存储器损坏,机械故障导致某段时间数据未能收集(对于定时数据采集而言)。
人为原因是由于人的主观失误、历史局限或有意隐瞒造成的数据缺失,比如,在市场调查中被访人拒绝透露相关问题的答案,或者回答的问题是无效的,数据录入人员失误漏录了数据。
以下来讨论缺失值的一般处理方法:
1. 删除
主要有简单删除法和权重法。简单删除法是对缺失值进行处理的最原始方法。
(1) 简单删除法
此方法将存在缺失值的数据条目(对象,元组,记录)进行删除。这种方法简单易行,在对象有多个属性缺失值、被删除的含缺失值的对象与信息表中的数据量相比非常小的情况下是非常有效的。然而,这种方法却有很大的局限性。它是以减少历史数据来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏在这些对象中的信息。在信息表中本来包含的对象很少的情况下,删除少量对象就足以严重影响到信息表信息的客观性和结果的正确性;当每个属性空值的百分比变化很大时,它的性能非常差。
(2) 权重法
当缺失值的类型为非完全随机缺失的时候,可以通过对完整的数据加权来减小偏差。把数据不完全的个案标记后,将完整的数据个案赋予不同的权重,个案的权重可以通过logistic或probit回归求得。如果解释变量中存在对权重估计起决定行因素的变量,那么这种方法可以有效减小偏差。如果解释变量和权重并不相关,它并不能减小偏差。对于存在多个属性缺失的情况,就需要对不同属性的缺失组合赋不同的权重,这将大大增加计算的难度,降低预测的准确性,这时权重法并不理想。
2. 填补
这类方法是用一定的值去填充空值,从而使信息表完备化。通常基于统计学原理,根据决策表中其余对象取值的分布情况来对一个空值进行填充,譬如用其余属性的平均值来进行补充等。数据挖掘中常用的有以下几种补齐方法:
(1) 人工填写(filling manually)
由于最了解数据的还是用户自己,因此这个方法产生数据偏离最小,可能是填充效果最好的一种。然而一般来说,该方法很费时,当数据规模很大、空值很多的时候,该方法是不可行的。
(2) 特殊值填充(Treating Missing Attribute values as Special values)
将空值作为一种特殊的属性值来处理,它不同于其他的任何属性值。如所有的空值都用“unknown”填充。这样将形成另一个有趣的概念,可能导致严重的数据偏离,一般不推荐使用。
(3) 均值填充(Mean/Mode Completer)
将信息表中的属性分为数值属性和非数值属性来分别进行处理。如果空值是数值型的,就根据该属性在其他所有对象的取值的平均值来填充该缺失的属性值;如果空值是非数值型的,就根据统计学中的众数原理,用该属性在其他所有对象的取值次数最多的值(即出现频率最高的值)来补齐该缺失的属性值。另外有一种与其相似的方法叫条件平均值填充法(Conditional Mean Completer)。在该方法中,缺失属性值的补齐同样是靠该属性在其他对象中的取值求平均得到,但不同的是用于求平均的值并不是从信息表所有对象中取,而是从与该对象具有相同决策属性值的对象中取得。这两种数据的补齐方法,其基本的出发点都是一样的,以最大概率可能的取值来补充缺失的属性值,只是在具体方法上有一点不同。与其他方法相比,它是用现存数据的多数信息来推测缺失值。
(4) 热卡填充(Hot deck imputation,或就近补齐)
对于一个包含空值的对象,热卡填充法在完整数据中找到一个与它最相似的对象,然后用这个相似对象的值来进行填充。不同的问题可能会选用不同的标准来对相似进行判定。该方法概念上很简单,且利用了数据间的关系来进行空值估计。这个方法的缺点在于难以定义相似标准,主观因素较多。
(5) 聚类填充(clustering imputation)
最为典型的代表是K最近距离邻法(K-means clustering),先根据欧式距离或相关分析来确定距离具有缺失数据样本最近的K个样本,将这K个值加权平均来估计该样本的缺失数据。同均值插补的方法都属于单值插补,不同的是,它用层次聚类模型预测缺失变量的类型,再以该类型的均值插补。假设X=(X1,X2…Xp)为信息完全的变量,Y为存在缺失值的变量,那么首先对X或其子集行聚类,然后按缺失个案所属类来插补不同类的均值。如果在以后统计分析中还需以引入的解释变量和Y做分析,那么这种插补方法将在模型中引入自相关,给分析造成障碍。
(6) 使用所有可能的值填充(Assigning All Possible values of the Attribute)
这种方法是用空缺属性值的所有可能的属性取值来填充,能够得到较好的补齐效果。但是,当数据量很大或者遗漏的属性值较多时,其计算的代价很大,可能的测试方案很多。另有一种方法,填补遗漏属性值的原则是一样的,不同的只是从决策相同的对象中尝试所有的属性值的可能情况,而不是根据信息表中所有对象进行尝试,这样能够在一定程度上减小原方法的代价。
(7) 组合完整化方法(Combinatorial Completer)
这种方法是用空缺属性值的所有可能的属性取值来试,并从最终属性的约简结果中选择最好的一个作为填补的属性值。这是以约简为目的的数据补齐方法,能够得到好的约简结果;但是,当数据量很大或者遗漏的属性值较多时,其计算的代价很大。另一种称为条件组合完整化方法(Conditional Combinatorial Complete),填补遗漏属性值的原则是一样的,不同的只是从决策相同的对象中尝试所有的属性值的可能情况,而不是根据信息表中所有对象进行尝试。条件组合完整化方法能够在一定程度上减小组合完整化方法的代价。在信息表包含不完整数据较多的情况下,可能的测试方案将巨增。
(8) 回归(Regression)
基于完整的数据集,建立回归方程(模型)。对于包含空值的对象,将已知属性值代入方程来估计未知属性值,以此估计值来进行填充。当变量不是线性相关或预测变量高度相关时会导致有偏差的估计。
(9) 极大似然估计(Max Likelihood ,ML)
在缺失类型为随机缺失的条件下,假设模型对于完整的样本是正确的,那么通过观测数据的边际分布可以对未知参数进行极大似然估计(Little and Rubin)。这种方法也被称为忽略缺失值的极大似然估计,对于极大似然的参数估计实际中常采用的计算方法是期望值最大化(Expectation Maximization,EM)。该方法比删除个案和单值插补更有吸引力,它一个重要前提:适用于大样本。有效样本的数量足够以保证ML估计值是渐近无偏的并服从正态分布。但是这种方法可能会陷入局部极值,收敛速度也不是很快,并且计算很复杂。
(10) 多重插补(Multiple Imputation,MI)
多值插补的思想来源于贝叶斯估计,认为待插补的值是随机的,它的值来自于已观测到的值。具体实践上通常是估计出待插补的值,然后再加上不同的噪声,形成多组可选插补值。根据某种选择依据,选取最合适的插补值。多重插补方法分为三个步骤:①为每个空值产生一套可能的插补值,这些值反映了无响应模型的不确定性;每个值都可以被用来插补数据集中的缺失值,产生若干个完整数据集合。②每个插补数据集合都用针对完整数据集的统计方法进行统计分析。③对来自各个插补数据集的结果,根据评分函数进行选择,产生最终的插补值。
多重插补和贝叶斯估计的思想是一致的,但是多重插补弥补了贝叶斯估计的几个不足。第一,贝叶斯估计以极大似然的方法估计,极大似然的方法要求模型的形式必须准确,如果参数形式不正确,将得到错误得结论,即先验分布将影响后验分布的准确性。而多重插补所依据的是大样本渐近完整的数据的理论,在数据挖掘中的数据量都很大,先验分布将极小的影响结果,所以先验分布的对结果的影响不大。第二,贝叶斯估计仅要求知道未知参数的先验分布,没有利用与参数的关系。而多重插补对参数的联合分布作出了估计,利用了参数间的相互关系。
同时,多重插补保持了单一插补的两个基本优点,即应用完全数据分析方法和融合数据收集者知识的能力。相对于单一插补,多重插补有三个极其重要的优点:第一,为表现数据分布,随机抽取进行插补,增加了估计的有效性。第二,当多重插补是在某个模型下的随机抽样时,按一种直接方式简单融合完全数据推断得出有效推断,即它反映了在该模型下由缺失值导致的附加变异。第三,在多个模型下通过随机抽取进行插补,简单地应用完全数据方法,可以对无回答的不同模型下推断的敏感性进行直接研究。
多重插补也有以下缺点:①生成多重插补比单一插补需要更多工作;②贮存多重插补数据集需要更多存储空间;③分析多重插补数据集比单一插补需要花费更多精力。
3. 不处理
直接在包含空值的数据上进行数据挖掘。这类方法包括贝叶斯网络和人工神经网络等。
贝叶斯网络是用来表示变量间连接概率的图形模式,它提供了一种自然的表示因果信息的方法,用来发现数据间的潜在关系。在这个网络中,用节点表示变量,有向边表示变量间的依赖关系。贝叶斯网络仅适合于对领域知识具有一定了解的情况,至少对变量间的依赖关系较清楚的情况。否则直接从数据中学习贝叶斯网的结构不但复杂性较高(随着变量的增加,指数级增加),网络维护代价昂贵,而且它的估计参数较多,为系统带来了高方差,影响了它的预测精度。当在任何一个对象中的缺失值数量很大时,存在指数爆炸的危险。
人工神经网络可以有效的对付空值,但人工神经网络在这方面的研究还有待进一步深入展开。人工神经网络方法在数据挖掘应用中的局限性
4. 总结
部分方法的优缺点及适用环境如下:
以上插补方法,对于缺失值的类型为随机缺失的插补有很好的效果。两种均值插补方法是最容易实现的,也是以前人们经常使用的,但是它对样本存在极大的干扰,尤其是当插补后的值作为解释变量进行回归时,参数的估计值与真实值的偏差很大。相比较而言,极大似然估计和多重插补是两种比较好的插补方法,与多重插补对比,极大似然缺少不确定成分,所以越来越多的人倾向于使用多值插补方法。
5. 参考文献
https://www.researchgate.net/profile/Chi_Seng_Pun/publication/311399915_Research_on_Multivariate_Statistical_Analysis_with_Missing_Data_in_Chinese/links/58443f2a08ae61f75dd67d67/Research-on-Multivariate-Statistical-Analysis-with-Missing-Data-in-Chinese.pdf
http://www.wenhuaxuan.com/shujuchuli/2013-09-27/7019.html
https://www.amazon.com/Flexible-Imputation-Missing-Interdisciplinary-Statistics/dp/1439868247