ElasticSearch

Posted bkxk

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ElasticSearch相关的知识,希望对你有一定的参考价值。

1. ES 基础一网打尽

1.1 ES定义

ES=elaticsearch简写, Elasticsearch是一个开源的高扩展的分布式全文检索引擎,它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别的数据。 
Elasticsearch也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。

1.2 Lucene与ES关系?

1)Lucene只是一个库。想要使用它,你必须使用Java来作为开发语言并将其直接集成到你的应用中,更糟糕的是,Lucene非常复杂,你需要深入了解检索的相关知识来理解它是如何工作的。

2)Elasticsearch也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。

1.3 ES主要解决问题:

1)检索相关数据; 
2)返回统计结果; 
3)速度要快。

1.4 ES工作原理

当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示: 
技术分享图片

1.5 ES核心概念

1)Cluster:集群。

ES可以作为一个独立的单个搜索服务器。不过,为了处理大型数据集,实现容错和高可用性,ES可以运行在许多互相合作的服务器上。这些服务器的集合称为集群。

2)Node:节点。

形成集群的每个服务器称为节点。

3)Shard:分片。

当有大量的文档时,由于内存的限制、磁盘处理能力不足、无法足够快的响应客户端的请求等,一个节点可能不够。这种情况下,数据可以分为较小的分片。每个分片放到不同的服务器上。 
当你查询的索引分布在多个分片上时,ES会把查询发送给每个相关的分片,并将结果组合在一起,而应用程序并不知道分片的存在。即:这个过程对用户来说是透明的。

4)Replia:副本。

为提高查询吞吐量或实现高可用性,可以使用分片副本。 
副本是一个分片的精确复制,每个分片可以有零个或多个副本。ES中可以有许多相同的分片,其中之一被选择更改索引操作,这种特殊的分片称为主分片。 
当主分片丢失时,如:该分片所在的数据不可用时,集群将副本提升为新的主分片。

5)全文检索。

全文检索就是对一篇文章进行索引,可以根据关键字搜索,类似于mysql里的like语句。 
全文索引就是把内容根据词的意义进行分词,然后分别创建索引,例如”你们的激情是因为什么事情来的” 可能会被分词成:“你们“,”激情“,“什么事情“,”来“ 等token,这样当你搜索“你们” 或者 “激情” 都会把这句搜出来。

1.6 ES数据架构的主要概念(与关系数据库Mysql对比)

技术分享图片 
(1)关系型数据库中的数据库(DataBase),等价于ES中的索引(Index) 
(2)一个数据库下面有N张表(Table),等价于1个索引Index下面有N多类型(Type), 
(3)一个数据库表(Table)下的数据由多行(ROW)多列(column,属性)组成,等价于1个Type由多个文档(Document)和多Field组成。 
(4)在一个关系型数据库里面,schema定义了表、每个表的字段,还有表和字段之间的关系。 与之对应的,在ES中:Mapping定义索引下的Type的字段处理规则,即索引如何建立、索引类型、是否保存原始索引JSON文档、是否压缩原始JSON文档、是否需要分词处理、如何进行分词处理等。 
(5)在数据库中的增insert、删delete、改update、查search操作等价于ES中的增PUT/POST、删Delete、改_update、查GET.

1.7 ELK是什么?

ELK=elasticsearch+Logstash+kibana 
elasticsearch:后台分布式存储以及全文检索 
logstash: 日志加工、“搬运工” 
kibana:数据可视化展示。 
ELK架构为数据分布式存储、可视化查询和日志解析创建了一个功能强大的管理链。 三者相互配合,取长补短,共同完成分布式大数据处理工作。

2. ES特点和优势

1)分布式实时文件存储,可将每一个字段存入索引,使其可以被检索到。 
2)实时分析的分布式搜索引擎。 
分布式:索引分拆成多个分片,每个分片可有零个或多个副本。集群中的每个数据节点都可承载一个或多个分片,并且协调和处理各种操作; 
负载再平衡和路由在大多数情况下自动完成。 
3)可以扩展到上百台服务器,处理PB级别的结构化或非结构化数据。也可以运行在单台PC上(已测试) 
4)支持插件机制,分词插件、同步插件、Hadoop插件、可视化插件等。

3、ES性能

3.1 性能结果展示

(1)硬件配置: 
CPU 16核 AuthenticAMD 
内存 总量:32GB 
硬盘 总量:500GB 非SSD

(2)在上述硬件指标的基础上测试性能如下: 
1)平均索引吞吐量: 12307docs/s(每个文档大小:40B/docs) 
2)平均CPU使用率: 887.7%(16核,平均每核:55.48%) 
3)构建索引大小: 3.30111 GB 
4)总写入量: 20.2123 GB 
5)测试总耗时: 28m 54s.

3.2 性能esrally工具(推荐)

使用参考:http://blog.csdn.net/laoyang360/article/details/52155481

4、为什么要用ES?

4.1 ES国内外使用优秀案例

1) 2013年初,GitHub抛弃了Solr,采取ElasticSearch 来做PB级的搜索。 “GitHub使用ElasticSearch搜索20TB的数据,包括13亿文件和1300亿行代码”。

2)维基百科:启动以elasticsearch为基础的核心搜索架构。 
3)SoundCloud:“SoundCloud使用ElasticSearch为1.8亿用户提供即时而精准的音乐搜索服务”。 
4)百度:百度目前广泛使用ElasticSearch作为文本数据分析,采集百度所有服务器上的各类指标数据及用户自定义数据,通过对各种数据进行多维分析展示,辅助定位分析实例异常或业务层面异常。目前覆盖百度内部20多个业务线(包括casio、云分析、网盟、预测、文库、直达号、钱包、风控等),单集群最大100台机器,200个ES节点,每天导入30TB+数据。

4.2 我们也需要

实际项目开发实战中,几乎每个系统都会有一个搜索的功能,当搜索做到一定程度时,维护和扩展起来难度就会慢慢变大,所以很多公司都会把搜索单独独立出一个模块,用ElasticSearch等来实现。

近年ElasticSearch发展迅猛,已经超越了其最初的纯搜索引擎的角色,现在已经增加了数据聚合分析(aggregation)和可视化的特性,如果你有数百万的文档需要通过关键词进行定位时,ElasticSearch肯定是最佳选择。当然,如果你的文档是JSON的,你也可以把ElasticSearch当作一种“NoSQL数据库”, 应用ElasticSearch数据聚合分析(aggregation)的特性,针对数据进行多维度的分析。

【知乎:热酷架构师潘飞】ES在某些场景下替代传统DB 
个人以为Elasticsearch作为内部存储来说还是不错的,效率也基本能够满足,在某些方面替代传统DB也是可以的,前提是你的业务不对操作的事性务有特殊要求;而权限管理也不用那么细,因为ES的权限这块还不完善。 
由于我们对ES的应用场景仅仅是在于对某段时间内的数据聚合操作,没有大量的单文档请求(比如通过userid来找到一个用户的文档,类似于NoSQL的应用场景),所以能否替代NoSQL还需要各位自己的测试。 
如果让我选择的话,我会尝试使用ES来替代传统的NoSQL,因为它的横向扩展机制太方便了。

5. ES的应用场景是怎样的?

通常我们面临问题有两个:

1)新系统开发尝试使用ES作为存储和检索服务器; 
2)现有系统升级需要支持全文检索服务,需要使用ES。 
以上两种架构的使用,以下链接进行详细阐述。 
http://blog.csdn.net/laoyang360/article/details/52227541

一线公司ES使用场景:

1)新浪ES 如何分析处理32亿条实时日志 http://dockone.io/article/505 
2)阿里ES 构建挖财自己的日志采集和分析体系 http://afoo.me/columns/tec/logging-platform-spec.html 
3)有赞ES 业务日志处理 http://tech.youzan.com/you-zan-tong-ri-zhi-ping-tai-chu-tan/ 
4)ES实现站内搜索 http://www.wtoutiao.com/p/13bkqiZ.html

6. 如何部署ES?

6.1 ES部署(无需安装)

1)零配置,开箱即用 
2)没有繁琐的安装配置 
3)java版本要求:最低1.7 
我使用的1.8 
[[email protected] config_lhy]# echo $JAVA_HOME 
/opt/jdk1.8.0_91 
4)下载地址: 
https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/zip/elasticsearch/2.3.5/elasticsearch-2.3.5.zip 
5)启动 
cd /usr/local/elasticsearch-2.3.5 
./bin/elasticsearch 
bin/elasticsearch -d(后台运行)

6.2 ES必要的插件

必要的Head、kibana、IK(中文分词)、graph等插件的详细安装和使用。 
http://blog.csdn.net/column/details/deep-elasticsearch.html

6.3 ES windows下一键安装

自写bat脚本实现windows下一键安装。 
1)一键安装ES及必要插件(head、kibana、IK、logstash等) 
2)安装后以服务形式运行ES。 
3)比自己摸索安装节省至少2小时时间,效率非常高。 
脚本说明: 
http://blog.csdn.net/laoyang360/article/details/51900235

7. ES对外接口(开发人员关注)

1)JAVA API接口

http://www.ibm.com/developerworks/library/j-use-elasticsearch-java-apps/index.html

2)RESTful API接口

常见的增、删、改、查操作实现: 
http://blog.csdn.net/laoyang360/article/details/51931981

8.ES遇到问题怎么办?

1)国外:https://discuss.elastic.co/ 
2)国内:http://elasticsearch.cn/

 

 

 

 

 

介绍

Elasticsearch 是一个分布式可扩展的实时搜索和分析引擎,一个建立在全文搜索引擎 Apache Lucene(TM) 基础上的搜索引擎.当然 

Elasticsearch 并不仅仅是 Lucene 那么简单,它不仅包括了全文搜索功能,还可以进行以下工作:

分布式实时文件存储,并将每一个字段都编入索引,使其可以被搜索。

实时分析的分布式搜索引擎。

可以扩展到上百台服务器,处理PB级别的结构化或非结构化数据。

基本概念

先说Elasticsearch的文件存储,Elasticsearch是面向文档型数据库,一条数据在这里就是一个文档,用JSON作为文档序列化的格式,

 

比如下面这条用户数据:

{

    "name" :     "John",

    "sex" :      "Male",

    "age" :      25,

    "birthDate": "1990/05/01",

    "about" :    "I love to go rock climbing",

    "interests": [ "sports", "music" ]

}

用Mysql这样的数据库存储就会容易想到建立一张User表,有balabala的字段等,在Elasticsearch里这就是一个文档,当然这个文档会

 

属于一个User的类型,各种各样的类型存在于一个索引当中。这里有一份简易的将Elasticsearch和关系型数据术语对照表:

 

关系数据库     ? 数据库 ? 表    ? 行    ? 列(Columns)

 

Elasticsearch  ? 索引(Index)   ? 类型(type)  ? 文档(Docments)  ? 字段(Fields)  

一个 Elasticsearch 集群可以包含多个索引(数据库),也就是说其中包含了很多类型(表)。这些类型中包含了很多的文档(行),然后每

 

个文档中又包含了很多的字段(列)。Elasticsearch的交互,可以使用Java API,也可以直接使用HTTP的Restful API方式,比如我们

 

打算插入一条记录,可以简单发送一个HTTP的请求:

 

PUT /megacorp/employee/1  

{

    "name" :     "John",

    "sex" :      "Male",

    "age" :      25,

    "about" :    "I love to go rock climbing",

    "interests": [ "sports", "music" ]

}

 

本质上就是个分布式的数据库,优势在于检索快些

介绍Elasticsearch 是一个分布式可扩展的实时搜索和分析引擎,一个建立在全文搜索引擎 Apache Lucene(TM) 基础上的搜索引擎.当然 
Elasticsearch 并不仅仅是 Lucene 那么简单,它不仅包括了全文搜索功能,还可以进行以下工作:
分布式实时文件存储,并将每一个字段都编入索引,使其可以被搜索。实时分析的分布式搜索引擎。可以扩展到上百台服务器,处理PB级别的结构化或非结构化数据。基本概念先说Elasticsearch的文件存储,Elasticsearch是面向文档型数据库,一条数据在这里就是一个文档,用JSON作为文档序列化的格式,
比如下面这条用户数据:
{    "name" :     "John",    "sex" :      "Male",    "age" :      25,    "birthDate": "1990/05/01",    "about" :    "I love to go rock climbing",    "interests": [ "sports", "music" ]}用Mysql这样的数据库存储就会容易想到建立一张User表,有balabala的字段等,在Elasticsearch里这就是一个文档,当然这个文档会
属于一个User的类型,各种各样的类型存在于一个索引当中。这里有一份简易的将Elasticsearch和关系型数据术语对照表:
关系数据库     ? 数据库 ? 表    ? 行    ? 列(Columns)
Elasticsearch  ? 索引(Index)   ? 类型(type)  ? 文档(Docments)  ? 字段(Fields)  一个 Elasticsearch 集群可以包含多个索引(数据库),也就是说其中包含了很多类型(表)。这些类型中包含了很多的文档(行),然后每
个文档中又包含了很多的字段(列)。Elasticsearch的交互,可以使用Java API,也可以直接使用HTTP的Restful API方式,比如我们
打算插入一条记录,可以简单发送一个HTTP的请求:
PUT /megacorp/employee/1  {    "name" :     "John",    "sex" :      "Male",    "age" :      25,    "about" :    "I love to go rock climbing",    "interests": [ "sports", "music" ]}
本质上就是个分布式的文档数据库,优势在于检索快些








































































以上是关于ElasticSearch的主要内容,如果未能解决你的问题,请参考以下文章