csdn的一次回答问题
Posted wangjunyan
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了csdn的一次回答问题相关的知识,希望对你有一定的参考价值。
#coding:utf8 import tushare as ts import pandas as pd import numpy as np import pymysql,datetime import matplotlib.pyplot as plt import logging import sys ,requests,re def init_env(): # token=‘23b817c8b6e2b772f37ad6f5628ad348a0aefed07ed9b07ecc75976d‘ # db=pymysql.connect(host=‘127.0.0.1‘,db=‘stock‘,user=‘root‘,passwd=‘root‘,charset=‘utf8‘) # cursor=db.cursor() # pro=ts.pro_api(token) aa=1 return aa # #初始化db,tushare token # db,cursor,pro=init_env() #coding=utf-8 duan ="--------------------------" #在控制台断行区别的 if __name__ == "__main__": nump_array_date = [‘20170808210000‘ ,‘20170808210100‘ ,‘20170808210200‘ ,‘20170808210300‘ ,‘20170808210400‘ ,‘20170808210500‘ ,‘20170808210600‘ ,‘20170808210700‘ ,‘20170808210800‘ ,‘20170808210900‘ ,‘20170808211000‘ ,‘20170808211100‘ ,‘20170808211200‘ ,‘20170808211300‘ ,‘20170808211400‘ ,‘20170808211500‘ ,‘20170808211600‘ ,‘20170808211700‘ ,‘20170808211800‘ ,‘20170808211900‘ ,‘20170808212000‘ ,‘20170808212100‘ ,‘20170808212200‘ ,‘20170808212300‘ ,‘20170808212400‘ ,‘20170808212500‘ ,‘20170808212600‘ ,‘20170808212700‘ ,‘20170808212800‘ ,‘20170808212900‘ ,‘20170808213000‘ ,‘20170808213100‘ ,‘20170808213200‘ ,‘20170808213300‘ ,‘20170808213400‘ ,‘20170808213500‘ ,‘20170808213600‘ ,‘20170808213700‘ ,‘20170808213800‘ ,‘20170808213900‘ ,‘20170808214000‘ ,‘20170808214100‘ ,‘20170808214200‘ ,‘20170808214300‘ ,‘20170808214400‘ ,‘20170808214500‘ ,‘20170808214600‘ ,‘20170808214700‘ ,‘20170808214800‘ ,‘20170808214900‘ ,‘20170808215000‘ ,‘20170808215100‘ ,‘20170808215200‘ ,‘20170808215300‘ ,‘20170808215400‘ ,‘20170808215500‘ ,‘20170808215600‘ ,‘20170808215700‘ ,‘20170808215800‘ ,‘20170808215900‘ ,‘20170808220000‘ ,‘20170808220100‘ ,‘20170808220200‘ ,‘20170808220300‘ ,‘20170808220400‘ ,‘20170808220500‘ ,‘20170808220600‘ ,‘20170808220700‘ ,‘20170808220800‘ ,‘20170808220900‘ ,‘20170808221000‘ ,‘20170808221100‘ ,‘20170808221200‘ ,‘20170808221300‘ ,‘20170808221400‘ ,‘20170808221500‘ ,‘20170808221600‘ ,‘20170808221700‘ ,‘20170808221800‘ ,‘20170808221900‘ ,‘20170808222000‘ ,‘20170808222100‘ ,‘20170808222200‘ ,‘20170808222300‘ ,‘20170808222400‘ ,‘20170808222500‘ ,‘20170808222600‘ ,‘20170808222700‘ ,‘20170808222800‘ ,‘20170808222900‘ ,‘20170808223000‘ ,‘20170808223100‘ ,‘20170808223200‘ ,‘20170808223300‘ ,‘20170808223400‘ ,‘20170808223500‘ ,‘20170808223600‘ ,‘20170808223700‘ ,‘20170808223800‘ ,‘20170808223900‘ ,‘20170808224000‘ ,‘20170808224100‘ ,‘20170808224200‘ ,‘20170808224300‘ ,‘20170808224400‘ ,‘20170808224500‘ ,‘20170808224600‘ ,‘20170808224700‘ ,‘20170808224800‘ ,‘20170808224900‘ ,‘20170808225000‘ ,‘20170808225100‘ ,‘20170808225200‘ ,‘20170808225300‘ ,‘20170808225400‘ ,‘20170808225500‘ ,‘20170808225600‘ ,‘20170808225700‘ ,‘20170808225800‘ ,‘20170808225900‘ ,‘20170808230000‘ ,‘20170809090000‘ ,‘20170809090100‘ ,‘20170809090200‘ ,‘20170809090300‘ ,‘20170809090400‘ ,‘20170809090500‘ ,‘20170809090600‘ ,‘20170809090700‘ ,‘20170809090800‘ ,‘20170809090900‘ ,‘20170809091000‘ ,‘20170809091100‘ ,‘20170809091200‘ ,‘20170809091300‘ ,‘20170809091400‘ ,‘20170809091500‘ ,‘20170809091600‘ ,‘20170809091700‘ ,‘20170809091800‘ ,‘20170809091900‘ ,‘20170809092000‘ ,‘20170809092100‘ ,‘20170809092200‘ ,‘20170809092300‘ ,‘20170809092400‘ ,‘20170809092500‘ ,‘20170809092600‘ ,‘20170809092700‘ ,‘20170809092800‘ ,‘20170809092900‘ ,‘20170809093000‘ ,‘20170809093100‘ ,‘20170809093200‘ ,‘20170809093300‘ ,‘20170809093400‘ ,‘20170809093500‘ ,‘20170809093600‘ ,‘20170809093700‘ ,‘20170809093800‘ ,‘20170809093900‘ ,‘20170809094000‘ ,‘20170809094100‘ ,‘20170809094200‘ ,‘20170809094300‘ ,‘20170809094400‘ ,‘20170809094500‘ ,‘20170809094600‘ ,‘20170809094700‘ ,‘20170809094800‘ ,‘20170809094900‘ ,‘20170809095000‘ ,‘20170809095100‘ ,‘20170809095200‘ ,‘20170809095300‘ ,‘20170809095400‘ ,‘20170809095500‘ ,‘20170809095600‘ ,‘20170809095700‘ ,‘20170809095800‘ ,‘20170809095900‘ ,‘20170809100000‘ ,‘20170809100100‘ ,‘20170809100200‘ ,‘20170809100300‘ ,‘20170809100400‘ ,‘20170809100500‘ ,‘20170809100600‘ ,‘20170809100700‘ ,‘20170809100800‘ ,‘20170809100900‘ ,‘20170809101000‘ ,‘20170809101100‘ ,‘20170809101200‘ ,‘20170809101300‘ ,‘20170809101400‘ ,‘20170809103000‘ ,‘20170809103100‘ ,‘20170809103200‘ ,‘20170809103300‘ ,‘20170809103400‘ ,‘20170809103500‘ ,‘20170809103600‘ ,‘20170809103700‘ ,‘20170809103800‘ ,‘20170809103900‘ ,‘20170809104000‘ ,‘20170809104100‘ ,‘20170809104200‘ ,‘20170809104300‘ ,‘20170809104400‘ ,‘20170809104500‘ ,‘20170809104600‘ ,‘20170809104700‘ ,‘20170809104800‘ ,‘20170809104900‘ ,‘20170809105000‘ ,‘20170809105100‘ ,‘20170809105200‘ ,‘20170809105300‘ ,‘20170809105400‘ ,‘20170809105500‘ ,‘20170809105600‘ ,‘20170809105700‘ ,‘20170809105800‘ ,‘20170809105900‘ ,‘20170809110000‘ ,‘20170809110100‘ ,‘20170809110200‘ ,‘20170809110300‘ ,‘20170809110400‘ ,‘20170809110500‘ ,‘20170809110600‘ ,‘20170809110700‘ ,‘20170809110800‘ ,‘20170809110900‘ ,‘20170809111000‘ ,‘20170809111100‘ ,‘20170809111200‘ ,‘20170809111300‘ ,‘20170809111400‘ ,‘20170809111500‘ ,‘20170809111600‘ ,‘20170809111700‘ ,‘20170809111800‘ ,‘20170809111900‘ ,‘20170809112000‘ ,‘20170809112100‘ ,‘20170809112200‘ ,‘20170809112300‘ ,‘20170809112400‘ ,‘20170809112500‘ ,‘20170809112600‘ ,‘20170809112700‘ ,‘20170809112800‘ ,‘20170809112900‘ ,‘20170809133000‘ ,‘20170809133100‘ ,‘20170809133200‘ ,‘20170809133300‘ ,‘20170809133400‘ ,‘20170809133500‘ ,‘20170809133600‘ ,‘20170809133700‘ ,‘20170809133800‘ ,‘20170809133900‘ ,‘20170809134000‘ ,‘20170809134100‘ ,‘20170809134200‘ ,‘20170809134300‘ ,‘20170809134400‘ ,‘20170809134500‘ ,‘20170809134600‘ ,‘20170809134700‘ ,‘20170809134800‘ ,‘20170809134900‘ ,‘20170809135000‘ ,‘20170809135100‘ ,‘20170809135200‘ ,‘20170809135300‘ ,‘20170809135400‘ ,‘20170809135500‘ ,‘20170809135600‘ ,‘20170809135700‘ ,‘20170809135800‘ ,‘20170809135900‘ ,‘20170809140000‘ ,‘20170809140100‘ ,‘20170809140200‘ ,‘20170809140300‘ ,‘20170809140400‘ ,‘20170809140500‘ ,‘20170809140600‘ ,‘20170809140700‘ ,‘20170809140800‘ ,‘20170809140900‘ ,‘20170809141000‘ ,‘20170809141100‘ ,‘20170809141200‘ ,‘20170809141300‘ ,‘20170809141400‘ ,‘20170809141500‘ ,‘20170809141600‘ ,‘20170809141700‘ ,‘20170809141800‘ ,‘20170809141900‘ ,‘20170809142000‘ ,‘20170809142100‘ ,‘20170809142200‘ ,‘20170809142300‘ ,‘20170809142400‘ ,‘20170809142500‘ ,‘20170809142600‘ ,‘20170809142700‘ ,‘20170809142800‘ ,‘20170809142900‘ ,‘20170809143000‘ ,‘20170809143100‘ ,‘20170809143200‘ ,‘20170809143300‘ ,‘20170809143400‘ ,‘20170809143500‘ ,‘20170809143600‘ ,‘20170809143700‘ ,‘20170809143800‘ ,‘20170809143900‘ ,‘20170809144000‘ ,‘20170809144100‘ ,‘20170809144200‘ ,‘20170809144300‘ ,‘20170809144400‘ ,‘20170809144500‘ ,‘20170809144600‘ ,‘20170809144700‘ ,‘20170809144800‘ ,‘20170809144900‘ ,‘20170809145000‘ ,‘20170809145100‘ ,‘20170809145200‘ ,‘20170809145300‘ ,‘20170809145400‘ ,‘20170809145500‘ ,‘20170809145600‘ ,‘20170809145700‘ ,‘20170809145800‘ ,‘20170809145900‘] nump_array_date= pd.to_datetime(nump_array_date) # convert str to date nump_array_price = [3900.0, 3903.0, 3891.0, 3888.0, 3893.0, 3895.0, 3899.0, 3906.0, 3914.0, 3911.0, 3912.0, 3910.0, 3914.0, 3920.0, 3920.0, 3915.0, 3915.0, 3915.0, 3911.0, 3903.0, 3901.0, 3899.0, 3894.0, 3901.0, 3901.0, 3897.0, 3891.0, 3882.0, 3878.0, 3881.0, 3878.0, 3885.0, 3886.0, 3889.0, 3887.0, 3887.0, 3886.0, 3885.0, 3886.0, 3887.0, 3894.0, 3888.0, 3890.0, 3887.0, 3888.0, 3883.0, 3880.0, 3885.0, 3887.0, 3882.0, 3882.0, 3887.0, 3886.0, 3885.0, 3890.0, 3891.0, 3887.0, 3890.0, 3886.0, 3891.0, 3888.0, 3891.0, 3881.0, 3878.0, 3877.0, 3875.0, 3871.0, 3872.0, 3879.0, 3876.0, 3879.0, 3885.0, 3884.0, 3883.0, 3879.0, 3877.0, 3880.0, 3878.0, 3882.0, 3885.0, 3883.0, 3884.0, 3883.0, 3881.0, 3882.0, 3889.0, 3896.0, 3891.0, 3897.0, 3905.0, 3901.0, 3902.0, 3899.0, 3897.0, 3896.0, 3899.0, 3902.0, 3902.0, 3905.0, 3913.0, 3910.0, 3909.0, 3902.0, 3901.0, 3902.0, 3897.0, 3903.0, 3902.0, 3901.0, 3900.0, 3903.0, 3906.0, 3906.0, 3909.0, 3904.0, 3902.0, 3902.0, 3902.0, 3904.0, 3909.0, 3909.0, 3941.0, 3934.0, 3947.0, 3938.0, 3939.0, 3938.0, 3932.0, 3930.0, 3929.0, 3924.0, 3930.0, 3930.0, 3926.0, 3929.0, 3918.0, 3914.0, 3912.0, 3908.0, 3912.0, 3913.0, 3910.0, 3915.0, 3916.0, 3913.0, 3915.0, 3918.0, 3913.0, 3908.0, 3912.0, 3911.0, 3916.0, 3913.0, 3915.0, 3918.0, 3917.0, 3916.0, 3920.0, 3920.0, 3917.0, 3916.0, 3912.0, 3913.0, 3909.0, 3911.0, 3910.0, 3907.0, 3908.0, 3901.0, 3907.0, 3908.0, 3909.0, 3910.0, 3909.0, 3911.0, 3912.0, 3914.0, 3915.0, 3913.0, 3919.0, 3917.0, 3915.0, 3918.0, 3919.0, 3918.0, 3926.0, 3925.0, 3925.0, 3927.0, 3923.0, 3926.0, 3926.0, 3920.0, 3921.0, 3919.0, 3919.0, 3917.0, 3921.0, 3924.0, 3922.0, 3921.0, 3923.0, 3922.0, 3922.0, 3927.0, 3928.0, 3928.0, 3929.0, 3926.0, 3927.0, 3928.0, 3926.0, 3922.0, 3912.0, 3911.0, 3908.0, 3912.0, 3910.0, 3913.0, 3905.0, 3910.0, 3904.0, 3893.0, 3896.0, 3898.0, 3896.0, 3903.0, 3905.0, 3905.0, 3907.0, 3906.0, 3909.0, 3910.0, 3910.0, 3913.0, 3911.0, 3911.0, 3914.0, 3913.0, 3908.0, 3913.0, 3910.0, 3910.0, 3911.0, 3914.0, 3918.0, 3917.0, 3917.0, 3919.0, 3919.0, 3917.0, 3922.0, 3926.0, 3924.0, 3927.0, 3925.0, 3940.0, 3940.0, 3943.0, 3949.0, 3953.0, 3951.0, 3951.0, 3953.0, 3950.0, 3957.0, 3964.0, 3964.0, 3960.0, 3958.0, 3963.0, 3963.0, 3956.0, 3959.0, 3959.0, 3957.0, 3961.0, 3960.0, 3960.0, 3963.0, 3972.0, 3971.0, 3974.0, 3982.0, 3980.0, 3981.0, 3969.0, 3970.0, 3970.0, 3972.0, 3968.0, 3968.0, 3970.0, 3974.0, 3973.0, 3974.0, 3971.0, 3972.0, 3978.0, 3982.0, 3975.0, 3971.0, 3970.0, 3972.0, 3971.0, 3970.0, 3973.0, 3973.0, 3976.0, 3976.0, 3975.0, 3981.0, 3980.0, 3979.0, 3979.0, 3984.0, 3980.0, 3977.0, 3983.0, 3984.0, 3984.0, 3980.0, 3979.0, 3979.0, 3978.0, 3978.0, 3978.0, 3979.0, 3983.0, 3978.0, 3978.0, 3981.0, 3984.0, 3990.0, 3993.0, 3997.0, 4001.0, 4000.0, 3997.0, 4003.0, 4003.0, 4000.0, 4002.0, 3991.0, 3994.0, 4006.0,] df=pd.DataFrame({‘date‘:nump_array_date,‘price‘:nump_array_price}) df_night=df[df.date<‘2017-08-09 09:00:00‘] df_0900=df[(df.date>=‘2017-08-09 09:00:00‘)&(df.date<=‘2017-08-09 10:15:00‘)] df_1030=df[(df.date>=‘2017-08-09 10:30:00‘)&(df.date<=‘2017-08-09 11:30:00‘)] df_1330=df[(df.date>=‘2017-08-09 13:30:00‘)&(df.date<=‘2017-08-09 15:00:00‘)] df_all=df_0900.append(df_1030) df_final=df_all.append(df_1330) x_tk=[] x_lb=[] for i in range(0,len(df_final.date.tolist())): x_tk.append(i) if i % 7==0: x_lb.append(df_final.date.tolist()[i]) else: x_lb.append("") plt.plot(x_tk,df_final.price) plt.xticks(x_tk,(x_lb),rotation=80) plt.show()
#coding:utf8
import tushare as ts
import pandas as pd
import numpy as np
import pymysql,datetime
import matplotlib.pyplot as plt
import logging
import sys ,requests,re
def init_env():
# token=‘23b817c8b6e2b772f37ad6f5628ad348a0aefed07ed9b07ecc75976d‘
# db=pymysql.connect(host=‘127.0.0.1‘,db=‘stock‘,user=‘root‘,passwd=‘root‘,charset=‘utf8‘)
# cursor=db.cursor()
# pro=ts.pro_api(token)
aa=1
return aa
# #初始化db,tushare token
# db,cursor,pro=init_env()
#coding=utf-8
duan ="--------------------------" #在控制台断行区别的
if __name__ == "__main__":
nump_array_date = [‘20170808210000‘ ,‘20170808210100‘ ,‘20170808210200‘ ,‘20170808210300‘
,‘20170808210400‘ ,‘20170808210500‘ ,‘20170808210600‘ ,‘20170808210700‘
,‘20170808210800‘ ,‘20170808210900‘ ,‘20170808211000‘ ,‘20170808211100‘
,‘20170808211200‘ ,‘20170808211300‘ ,‘20170808211400‘ ,‘20170808211500‘
,‘20170808211600‘ ,‘20170808211700‘ ,‘20170808211800‘ ,‘20170808211900‘
,‘20170808212000‘ ,‘20170808212100‘ ,‘20170808212200‘ ,‘20170808212300‘
,‘20170808212400‘ ,‘20170808212500‘ ,‘20170808212600‘ ,‘20170808212700‘
,‘20170808212800‘ ,‘20170808212900‘ ,‘20170808213000‘ ,‘20170808213100‘
,‘20170808213200‘ ,‘20170808213300‘ ,‘20170808213400‘ ,‘20170808213500‘
,‘20170808213600‘ ,‘20170808213700‘ ,‘20170808213800‘ ,‘20170808213900‘
,‘20170808214000‘ ,‘20170808214100‘ ,‘20170808214200‘ ,‘20170808214300‘
,‘20170808214400‘ ,‘20170808214500‘ ,‘20170808214600‘ ,‘20170808214700‘
,‘20170808214800‘ ,‘20170808214900‘ ,‘20170808215000‘ ,‘20170808215100‘
,‘20170808215200‘ ,‘20170808215300‘ ,‘20170808215400‘ ,‘20170808215500‘
,‘20170808215600‘ ,‘20170808215700‘ ,‘20170808215800‘ ,‘20170808215900‘
,‘20170808220000‘ ,‘20170808220100‘ ,‘20170808220200‘ ,‘20170808220300‘
,‘20170808220400‘ ,‘20170808220500‘ ,‘20170808220600‘ ,‘20170808220700‘
,‘20170808220800‘ ,‘20170808220900‘ ,‘20170808221000‘ ,‘20170808221100‘
,‘20170808221200‘ ,‘20170808221300‘ ,‘20170808221400‘ ,‘20170808221500‘
,‘20170808221600‘ ,‘20170808221700‘ ,‘20170808221800‘ ,‘20170808221900‘
,‘20170808222000‘ ,‘20170808222100‘ ,‘20170808222200‘ ,‘20170808222300‘
,‘20170808222400‘ ,‘20170808222500‘ ,‘20170808222600‘ ,‘20170808222700‘
,‘20170808222800‘ ,‘20170808222900‘ ,‘20170808223000‘ ,‘20170808223100‘
,‘20170808223200‘ ,‘20170808223300‘ ,‘20170808223400‘ ,‘20170808223500‘
,‘20170808223600‘ ,‘20170808223700‘ ,‘20170808223800‘ ,‘20170808223900‘
,‘20170808224000‘ ,‘20170808224100‘ ,‘20170808224200‘ ,‘20170808224300‘
,‘20170808224400‘ ,‘20170808224500‘ ,‘20170808224600‘ ,‘20170808224700‘
,‘20170808224800‘ ,‘20170808224900‘ ,‘20170808225000‘ ,‘20170808225100‘
,‘20170808225200‘ ,‘20170808225300‘ ,‘20170808225400‘ ,‘20170808225500‘
,‘20170808225600‘ ,‘20170808225700‘ ,‘20170808225800‘ ,‘20170808225900‘
,‘20170808230000‘ ,‘20170809090000‘ ,‘20170809090100‘ ,‘20170809090200‘
,‘20170809090300‘ ,‘20170809090400‘ ,‘20170809090500‘ ,‘20170809090600‘
,‘20170809090700‘ ,‘20170809090800‘ ,‘20170809090900‘ ,‘20170809091000‘
,‘20170809091100‘ ,‘20170809091200‘ ,‘20170809091300‘ ,‘20170809091400‘
,‘20170809091500‘ ,‘20170809091600‘ ,‘20170809091700‘ ,‘20170809091800‘
,‘20170809091900‘ ,‘20170809092000‘ ,‘20170809092100‘ ,‘20170809092200‘
,‘20170809092300‘ ,‘20170809092400‘ ,‘20170809092500‘ ,‘20170809092600‘
,‘20170809092700‘ ,‘20170809092800‘ ,‘20170809092900‘ ,‘20170809093000‘
,‘20170809093100‘ ,‘20170809093200‘ ,‘20170809093300‘ ,‘20170809093400‘
,‘20170809093500‘ ,‘20170809093600‘ ,‘20170809093700‘ ,‘20170809093800‘
,‘20170809093900‘ ,‘20170809094000‘ ,‘20170809094100‘ ,‘20170809094200‘
,‘20170809094300‘ ,‘20170809094400‘ ,‘20170809094500‘ ,‘20170809094600‘
,‘20170809094700‘ ,‘20170809094800‘ ,‘20170809094900‘ ,‘20170809095000‘
,‘20170809095100‘ ,‘20170809095200‘ ,‘20170809095300‘ ,‘20170809095400‘
,‘20170809095500‘ ,‘20170809095600‘ ,‘20170809095700‘ ,‘20170809095800‘
,‘20170809095900‘ ,‘20170809100000‘ ,‘20170809100100‘ ,‘20170809100200‘
,‘20170809100300‘ ,‘20170809100400‘ ,‘20170809100500‘ ,‘20170809100600‘
,‘20170809100700‘ ,‘20170809100800‘ ,‘20170809100900‘ ,‘20170809101000‘
,‘20170809101100‘ ,‘20170809101200‘ ,‘20170809101300‘ ,‘20170809101400‘
,‘20170809103000‘ ,‘20170809103100‘ ,‘20170809103200‘ ,‘20170809103300‘
,‘20170809103400‘ ,‘20170809103500‘ ,‘20170809103600‘ ,‘20170809103700‘
,‘20170809103800‘ ,‘20170809103900‘ ,‘20170809104000‘ ,‘20170809104100‘
,‘20170809104200‘ ,‘20170809104300‘ ,‘20170809104400‘ ,‘20170809104500‘
,‘20170809104600‘ ,‘20170809104700‘ ,‘20170809104800‘ ,‘20170809104900‘
,‘20170809105000‘ ,‘20170809105100‘ ,‘20170809105200‘ ,‘20170809105300‘
,‘20170809105400‘ ,‘20170809105500‘ ,‘20170809105600‘ ,‘20170809105700‘
,‘20170809105800‘ ,‘20170809105900‘ ,‘20170809110000‘ ,‘20170809110100‘
,‘20170809110200‘ ,‘20170809110300‘ ,‘20170809110400‘ ,‘20170809110500‘
,‘20170809110600‘ ,‘20170809110700‘ ,‘20170809110800‘ ,‘20170809110900‘
,‘20170809111000‘ ,‘20170809111100‘ ,‘20170809111200‘ ,‘20170809111300‘
,‘20170809111400‘ ,‘20170809111500‘ ,‘20170809111600‘ ,‘20170809111700‘
,‘20170809111800‘ ,‘20170809111900‘ ,‘20170809112000‘ ,‘20170809112100‘
,‘20170809112200‘ ,‘20170809112300‘ ,‘20170809112400‘ ,‘20170809112500‘
,‘20170809112600‘ ,‘20170809112700‘ ,‘20170809112800‘ ,‘20170809112900‘
,‘20170809133000‘ ,‘20170809133100‘ ,‘20170809133200‘ ,‘20170809133300‘
,‘20170809133400‘ ,‘20170809133500‘ ,‘20170809133600‘ ,‘20170809133700‘
,‘20170809133800‘ ,‘20170809133900‘ ,‘20170809134000‘ ,‘20170809134100‘
,‘20170809134200‘ ,‘20170809134300‘ ,‘20170809134400‘ ,‘20170809134500‘
,‘20170809134600‘ ,‘20170809134700‘ ,‘20170809134800‘ ,‘20170809134900‘
,‘20170809135000‘ ,‘20170809135100‘ ,‘20170809135200‘ ,‘20170809135300‘
,‘20170809135400‘ ,‘20170809135500‘ ,‘20170809135600‘ ,‘20170809135700‘
,‘20170809135800‘ ,‘20170809135900‘ ,‘20170809140000‘ ,‘20170809140100‘
,‘20170809140200‘ ,‘20170809140300‘ ,‘20170809140400‘ ,‘20170809140500‘
,‘20170809140600‘ ,‘20170809140700‘ ,‘20170809140800‘ ,‘20170809140900‘
,‘20170809141000‘ ,‘20170809141100‘ ,‘20170809141200‘ ,‘20170809141300‘
,‘20170809141400‘ ,‘20170809141500‘ ,‘20170809141600‘ ,‘20170809141700‘
,‘20170809141800‘ ,‘20170809141900‘ ,‘20170809142000‘ ,‘20170809142100‘
,‘20170809142200‘ ,‘20170809142300‘ ,‘20170809142400‘ ,‘20170809142500‘
,‘20170809142600‘ ,‘20170809142700‘ ,‘20170809142800‘ ,‘20170809142900‘
,‘20170809143000‘ ,‘20170809143100‘ ,‘20170809143200‘ ,‘20170809143300‘
,‘20170809143400‘ ,‘20170809143500‘ ,‘20170809143600‘ ,‘20170809143700‘
,‘20170809143800‘ ,‘20170809143900‘ ,‘20170809144000‘ ,‘20170809144100‘
,‘20170809144200‘ ,‘20170809144300‘ ,‘20170809144400‘ ,‘20170809144500‘
,‘20170809144600‘ ,‘20170809144700‘ ,‘20170809144800‘ ,‘20170809144900‘
,‘20170809145000‘ ,‘20170809145100‘ ,‘20170809145200‘ ,‘20170809145300‘
,‘20170809145400‘ ,‘20170809145500‘ ,‘20170809145600‘ ,‘20170809145700‘
,‘20170809145800‘ ,‘20170809145900‘]
nump_array_date= pd.to_datetime(nump_array_date) # convert str to date
nump_array_price = [3900.0, 3903.0, 3891.0, 3888.0, 3893.0, 3895.0, 3899.0, 3906.0, 3914.0, 3911.0,
3912.0, 3910.0, 3914.0, 3920.0, 3920.0, 3915.0, 3915.0, 3915.0, 3911.0, 3903.0,
3901.0, 3899.0, 3894.0, 3901.0, 3901.0, 3897.0, 3891.0, 3882.0, 3878.0, 3881.0,
3878.0, 3885.0, 3886.0, 3889.0, 3887.0, 3887.0, 3886.0, 3885.0, 3886.0, 3887.0,
3894.0, 3888.0, 3890.0, 3887.0, 3888.0, 3883.0, 3880.0, 3885.0, 3887.0, 3882.0,
3882.0, 3887.0, 3886.0, 3885.0, 3890.0, 3891.0, 3887.0, 3890.0, 3886.0, 3891.0,
3888.0, 3891.0, 3881.0, 3878.0, 3877.0, 3875.0, 3871.0, 3872.0, 3879.0, 3876.0,
3879.0, 3885.0, 3884.0, 3883.0, 3879.0, 3877.0, 3880.0, 3878.0, 3882.0, 3885.0,
3883.0, 3884.0, 3883.0, 3881.0, 3882.0, 3889.0, 3896.0, 3891.0, 3897.0, 3905.0,
3901.0, 3902.0, 3899.0, 3897.0, 3896.0, 3899.0, 3902.0, 3902.0, 3905.0, 3913.0,
3910.0, 3909.0, 3902.0, 3901.0, 3902.0, 3897.0, 3903.0, 3902.0, 3901.0, 3900.0,
3903.0, 3906.0, 3906.0, 3909.0, 3904.0, 3902.0, 3902.0, 3902.0, 3904.0, 3909.0,
3909.0, 3941.0, 3934.0, 3947.0, 3938.0, 3939.0, 3938.0, 3932.0, 3930.0, 3929.0,
3924.0, 3930.0, 3930.0, 3926.0, 3929.0, 3918.0, 3914.0, 3912.0, 3908.0, 3912.0,
3913.0, 3910.0, 3915.0, 3916.0, 3913.0, 3915.0, 3918.0, 3913.0, 3908.0, 3912.0,
3911.0, 3916.0, 3913.0, 3915.0, 3918.0, 3917.0, 3916.0, 3920.0, 3920.0, 3917.0,
3916.0, 3912.0, 3913.0, 3909.0, 3911.0, 3910.0, 3907.0, 3908.0, 3901.0, 3907.0,
3908.0, 3909.0, 3910.0, 3909.0, 3911.0, 3912.0, 3914.0, 3915.0, 3913.0, 3919.0,
3917.0, 3915.0, 3918.0, 3919.0, 3918.0, 3926.0, 3925.0, 3925.0, 3927.0, 3923.0,
3926.0, 3926.0, 3920.0, 3921.0, 3919.0, 3919.0, 3917.0, 3921.0, 3924.0, 3922.0,
3921.0, 3923.0, 3922.0, 3922.0, 3927.0, 3928.0, 3928.0, 3929.0, 3926.0, 3927.0,
3928.0, 3926.0, 3922.0, 3912.0, 3911.0, 3908.0, 3912.0, 3910.0, 3913.0, 3905.0,
3910.0, 3904.0, 3893.0, 3896.0, 3898.0, 3896.0, 3903.0, 3905.0, 3905.0, 3907.0,
3906.0, 3909.0, 3910.0, 3910.0, 3913.0, 3911.0, 3911.0, 3914.0, 3913.0, 3908.0,
3913.0, 3910.0, 3910.0, 3911.0, 3914.0, 3918.0, 3917.0, 3917.0, 3919.0, 3919.0,
3917.0, 3922.0, 3926.0, 3924.0, 3927.0, 3925.0, 3940.0, 3940.0, 3943.0, 3949.0,
3953.0, 3951.0, 3951.0, 3953.0, 3950.0, 3957.0, 3964.0, 3964.0, 3960.0, 3958.0,
3963.0, 3963.0, 3956.0, 3959.0, 3959.0, 3957.0, 3961.0, 3960.0, 3960.0, 3963.0,
3972.0, 3971.0, 3974.0, 3982.0, 3980.0, 3981.0, 3969.0, 3970.0, 3970.0, 3972.0,
3968.0, 3968.0, 3970.0, 3974.0, 3973.0, 3974.0, 3971.0, 3972.0, 3978.0, 3982.0,
3975.0, 3971.0, 3970.0, 3972.0, 3971.0, 3970.0, 3973.0, 3973.0, 3976.0, 3976.0,
3975.0, 3981.0, 3980.0, 3979.0, 3979.0, 3984.0, 3980.0, 3977.0, 3983.0, 3984.0,
3984.0, 3980.0, 3979.0, 3979.0, 3978.0, 3978.0, 3978.0, 3979.0, 3983.0, 3978.0,
3978.0, 3981.0, 3984.0, 3990.0, 3993.0, 3997.0, 4001.0, 4000.0, 3997.0, 4003.0,
4003.0, 4000.0, 4002.0, 3991.0, 3994.0, 4006.0,]
df=pd.DataFrame({‘date‘:nump_array_date,‘price‘:nump_array_price})
df_night=df[df.date<‘2017-08-09 09:00:00‘]
df_0900=df[(df.date>=‘2017-08-09 09:00:00‘)&(df.date<=‘2017-08-09 10:15:00‘)]
df_1030=df[(df.date>=‘2017-08-09 10:30:00‘)&(df.date<=‘2017-08-09 11:30:00‘)]
df_1330=df[(df.date>=‘2017-08-09 13:30:00‘)&(df.date<=‘2017-08-09 15:00:00‘)]
df_all=df_0900.append(df_1030)
df_final=df_all.append(df_1330)
x_tk=[]
x_lb=[]
for i in range(0,len(df_final.date.tolist())):
x_tk.append(i)
if i % 7==0:
x_lb.append(df_final.date.tolist()[i])
else:
x_lb.append("")
plt.plot(x_tk,df_final.price)
plt.xticks(x_tk,(x_lb),rotation=80)
plt.show()
以上是关于csdn的一次回答问题的主要内容,如果未能解决你的问题,请参考以下文章
CSDN日报20170516 ——《 驱动小白和硬件老司机关于硬件那点事儿的一次密谈》
popBackStack导致一次又一次调用片段的oncreateView
按一次返回按钮停留在同一个片段上,如果按两次,它将返回到上一个片段
Azure 机器人微软Azure Bot 编辑器系列 : 机器人/用户提问回答模式,机器人从API获取响应并组织答案 (The Bot Framework Composer tutorial(代码片段