列表生成式,迭代器&生成器
Posted x2x3
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了列表生成式,迭代器&生成器相关的知识,希望对你有一定的参考价值。
python3中range(10)就 是迭代器
列表生成式
#列表生成式 a=[0,1,2,3,4,5] b=[] for index,i in enumerate(a): a[index]+1 print a c=[] for i in a: c.append(i+1) print c a=[i+1 for i in range(5)] print a a = map(lambda x:x+1, [1, 2, 3, 4, 5, 6]) for i in a: print i
生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator
L
=
[x
*
x
for
x
in
range
(
10
)]
g
=
(x
*
x
for
x
in
range
(
10
))
generator保存的是算法,每次调用next(g)
,就计算出g
的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration
的错误
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator:
如果一个函数定义中包含yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator:
generator和函数的执行流程不一样。函数是顺序执行,遇到return
语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()
的时候执行,遇到yield
语句返回,再次执行时从上次返回的yield
语句处继续执行。
可以直接作用于for
循环的数据类型有以下几种:
一类是集合数据类型,如list
、tuple
、dict
、set
、str
等;
一类是generator
,包括生成器和带yield
的generator function。
这些可以直接作用于for
循环的对象统称为可迭代对象:Iterable
。
可以使用isinstance()
判断一个对象是否是Iterable
对象: 数字不是可迭代对象
for i in 33:
print(i)
TypeError: ‘int‘ object is not iterabl
*可以被next()
函数调用并不断返回下一个值的对象称为迭代器:Iterator
可以使用isinstance()
判断一个对象是否是Iterator
对象:
生成器都是Iterator
对象,但list
、dict
、str
虽然是Iterable
,却不是Iterator
。
把list
、dict
、str
等Iterable
变成Iterator
可以使用iter()
函数:
为什么list
、dict
、str
等数据类型不是Iterator
?
这是因为Python的Iterator
对象表示的是一个数据流,Iterator对象可以被next()
函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration
错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()
函数实现按需计算下一个数据,所以Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator
甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
凡是可作用于for
循环的对象都是Iterable
类型;
凡是可作用于next()
函数的对象都是Iterator
类型,它们表示一个惰性计算的序列;
集合数据类型如list
、dict
、str
等是Iterable
但不是Iterator
,不过可以通过iter()
函数获得一个Iterator
对象。
Python的for
循环本质上就是通过不断调用next()
函数实现的
以上是关于列表生成式,迭代器&生成器的主要内容,如果未能解决你的问题,请参考以下文章