回归模型与房价预测

Posted llabc

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了回归模型与房价预测相关的知识,希望对你有一定的参考价值。

1. 导入boston房价数据集

from sklearn.datasets import load_boston
boston = load_boston()
boston.keys()
print(boston.DESCR)#介绍
data = boston.data#查看数据
boston.target#查看房价
boston.feature_names#特征

  

2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示。

import pandas as pd #导包
pd.DataFrame(boston.data)

#预处理获取斜率

from sklearn.linear_model import LinearRegression
LineR = LinearRegression()
LineR.fit(x.reshape(-1,1),y)
w=LineR.coef_



#获取截距
b=LineR.intercept_


#图形化显示
x = data[:,5]
y = boston.target

import matplotlib.pyplot as plt
plt.scatter(x,y)
plt.plot(x,w*x+b,‘G‘)
plt.show()

  技术分享图片

3. 多元线性回归模型,建立13个变量与房价之间的预测模型,并检测模型好坏,并图形化显示检查结果。

4.  一元多项式回归模型,建立一个变量与房价之间的预测模型,并图形化显示。

 

以上是关于回归模型与房价预测的主要内容,如果未能解决你的问题,请参考以下文章

回归模型与房价预测

回归模型与房价预测

回归模型与房价预测

回归模型与房价预测

回归模型与房价预测

回归模型与房价预测