numpy基础四
Posted panfengde
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了numpy基础四相关的知识,希望对你有一定的参考价值。
数组的形状
- arange(i) 生成0到i的序列,不包括i
- shape 维度/形状
- reshape 重新设置形状
- newaxis 新的维度
- squeeze 去掉空维度
- transpose/T 变化形状
- concatenate 矩阵链接
- vstack 垂直合并
- hstack 水平合并
- flatten
- ravel
arange
array_aange=np.arange(10)
#>>>
[0 1 2 3 4 5 6 7 8 9]
shape
array_shape=np.arange(10)
array_shape.shape
#>>>
(10,)
reshape
array_reshape=np.arange(10)
array_reshape.reshape(1,10) #大小必须不能改变 10个元素,变化后还是10个
#>>>
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])
newaxis
array_newaxis=np.arange(10)
array_newaxis=array_newaxis[np.newaxis,:]
print(array_newaxis)
print(array_newaxis.shape)
# >>>
[[0 1 2 3 4 5 6 7 8 9]]
(1, 10)
array_newaxis=np.arange(10)
array_newaxis=array_newaxis[:,np.newaxis]
print(array_newaxis)
print(array_newaxis.shape)
#>>>
[[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]]
(10, 1)
squeeze
array_newaxis=np.arange(10)
array_newaxis=array_newaxis[:,np.newaxis,np.newaxis]
print(array_newaxis)
print(array_newaxis.shape)
#>>>
[[[0]]
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]]
(10, 1, 1)
array_squeeze=array_newaxis.squeeze()
print(array_squeeze)
#>>>
[0 1 2 3 4 5 6 7 8 9]
transpose 形状转换
array_transpose=np.array([[1,2,3,4,5],[2,3,4,5,6]])
array_transpose.transpose()
#>>>
array([[1, 2],
[2, 3],
[3, 4],
[4, 5],
[5, 6]])
concatenate数组链接
a=np.array([[1,2,3,4,5],[5,4,3,2,1]])
b=np.array([[0,9,8,7,6],[6,7,8,9,0]])
array_concatenate=np.concatenate((a,b))
print(array_concatenate)
#>>>
[[1 2 3 4 5]
[5 4 3 2 1]
[0 9 8 7 6]
[6 7 8 9 0]]
array_concatnate_axis=np.concatenate((a,b),axis=1)
print(array_concatnate_axis)
#>>>
[[1 2 3 4 5 0 9 8 7 6]
[5 4 3 2 1 6 7 8 9 0]]
array_concatnate_axis.shape
#>>>
(2, 10)
vstack 垂直合并
a=np.array([[1,2,3,4,5],[5,4,3,2,1]])
b=np.array([[0,9,8,7,6],[6,7,8,9,0]])
np.vstack((a,b))
#>>>
array([[1, 2, 3, 4, 5],
[5, 4, 3, 2, 1],
[0, 9, 8, 7, 6],
[6, 7, 8, 9, 0]])
hstack 水平合并
np.hstack((a,b)) 水平合并
#>>>
array([[1, 2, 3, 4, 5, 0, 9, 8, 7, 6],
[5, 4, 3, 2, 1, 6, 7, 8, 9, 0]])
flatten 合并成一行
array_flatten=np.array([[1,2,3,4],[4,5,6,7]])
array_flatten.flatten()
#>>>
array([1, 2, 3, 4, 4, 5, 6, 7])
revel合并成一行
array_ravel=np.array([[1,2,3,4],[4,5,6,7]])
array_ravel.ravel()
#>>>
array([1, 2, 3, 4, 4, 5, 6, 7])
数组的生成
- arange
- linspace
- logspace
- meshgrid
- r_
- c_
- zeros
- ones
- empty
- fill
- zeros_like
- ones_likes
- identity 基准矩阵
range
array_arange=np.arange(10)
print(array_arange)
array_arang_b=np.arange(1,10,2)
print(array_arang_b)
array_arange_c=np.arange(1,10,5,dtype=np.float32)
#>>>
[0 1 2 3 4 5 6 7 8 9]
[1 3 5 7 9]
linspace
array_linspace=np.linspace(1,10) ##默认等差数列个数为 50。
print(array_linspace)
array_linpsace_a=np.linspace(1,10,2)
#>>>
[1. 1.18367347 1.36734694 1.55102041 1.73469388 1.91836735
2.10204082 2.28571429 2.46938776 2.65306122 2.83673469 3.02040816
3.20408163 3.3877551 3.57142857 3.75510204 3.93877551 4.12244898
4.30612245 4.48979592 4.67346939 4.85714286 5.04081633 5.2244898
5.40816327 5.59183673 5.7755102 5.95918367 6.14285714 6.32653061
6.51020408 6.69387755 6.87755102 7.06122449 7.24489796 7.42857143
7.6122449 7.79591837 7.97959184 8.16326531 8.34693878 8.53061224
8.71428571 8.89795918 9.08163265 9.26530612 9.44897959 9.63265306
9.81632653 10. ]
logspace
np.logspace(0,1,5) # 10的0次幂到10的1次幂 5个等比列数据
#>>>
array([ 1. , 1.77827941, 3.16227766, 5.62341325, 10. ])
meshgrid
x=np.linspace(-10,10,5)
print(x)
y=np.linspace(-20,20,5)
print(y)
#>>>
[-10. -5. 0. 5. 10.]
[-20. -10. 0. 10. 20.]
x1,y1=np.meshgrid(x,y)
print(x1)
print(y1)
#>>>
[[-10. -5. 0. 5. 10.]
[-10. -5. 0. 5. 10.]
[-10. -5. 0. 5. 10.]
[-10. -5. 0. 5. 10.]
[-10. -5. 0. 5. 10.]]
[[-20. -20. -20. -20. -20.]
[-10. -10. -10. -10. -10.]
[ 0. 0. 0. 0. 0.]
[ 10. 10. 10. 10. 10.]
[ 20. 20. 20. 20. 20.]]
r_ row 行向量
np.r_[0:10:1]
#>>>
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
c_ col 列向量
np.c_[0:10:1]
#>>>
array([[0],
[1],
[2],
[3],
[4],
[5],
[6],
[7],
[8],
[9]])
zeros填充0
np.zeros(5)
array([0., 0., 0., 0., 0.])
np.zeros((5,5))
array([[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])
ones填充1
np.ones(5)
#>>>
array([1., 1., 1., 1., 1.])
np.ones((5,5))
array([[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.]])
empty空地址
np.empty(5)
np.empty((5,5))
fill 自定义填充
a=np.empty((5,5))
a.fill(3)
print(a)
#>>>
[[3. 3. 3. 3. 3.]
[3. 3. 3. 3. 3.]
[3. 3. 3. 3. 3.]
[3. 3. 3. 3. 3.]
[3. 3. 3. 3. 3.]]
zeros_like ones_like
temp=np.arange(0,10,2)
print(temp)
#>>>
[0 2 4 6 8]
result=np.zeros_like(temp)
print(result)
#>>>
[0 0 0 0 0]
result_ones=np.ones_like(temp)
print(result_ones)
#>>>
[1 1 1 1 1]
identity 对角矩阵
np.identity(5)
#>>>
array([[1., 0., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.]])
以上是关于numpy基础四的主要内容,如果未能解决你的问题,请参考以下文章
Python必备基础:这些NumPy的神操作你都掌握了吗?微交易支付通道申请微信支付接口对接支付宝支付通道搭建微盘网银扫码快捷H5支付