[Ynoi2015]此时此刻的光辉

Posted mrsrz

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[Ynoi2015]此时此刻的光辉相关的知识,希望对你有一定的参考价值。

题目大意:

给定一个序列,每次询问一段区间的数的乘积的约数个数。

解题思路:

在太阳西斜的这个世界里,置身天上之森。等这场战争结束之后,不归之人与望眼欲穿的众人, 人人本着正义之名,长存不灭的过去、逐渐消逝的未来。我回来了,纵使日薄西山,即便看不到未来,此时此刻的光辉,盼君勿忘。————世界上最幸福的女孩

我永远喜欢珂朵莉。

---

(10^9)以内的数最多有10个**不同的**质因子。

考虑对其质因数分解。

由于值域范围过大,考虑使用Pollard-Rho算法。

这里普通的Pollard-Rho算法可能会TLE。如果你的代码能通过模板题,那基本上没问题(~~窝反正直接把以前写的板子拉过来然后调了调参~~)。

之后,你就会得到最多(10n)个不同的质因数。对其进行离散化,开桶记录。

然后上莫队,对于每次指针的偏移,把它所有的质因数加到桶里,同时维护约数个数即可。

这部分时间复杂度(O(10nsqrt n)),加上上面的质因数分解的玄学期望复杂度,只能获得82分的好成绩。

---

我们考虑把每个数(1000)以内的质因子先取出来((1000)以内共168个质数),然后,对其做前缀和,记录前缀的出现次数。

然后,由于(1001^3>10^9),所以每个数剩下最多不超过2个质因子。这部分用Pollard_Rho找即可。

然后莫队的时候,对于前面168个质数就可以不用维护,直接用前缀和。

而对于后面的大质因子,再离散化处理即可。由于每个数最多两个质因子,所以常数就小了很多。

而由于筛掉了很多小的质因子,Pollard_Rho的速度也会变快。然后就足以通过此题。

C++ Code:

// luogu-judger-enable-o2
#include<cctype>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<vector>
#include<cstring>
#define ctz __builtin_ctz
using namespace std;
#ifdef ONLINE_JUDGE
struct istream{
    char buf[23333333],*s;
    inline istream(){
        buf[fread(s=buf,1,23333330,stdin)]=‘
‘;
        fclose(stdin);
    }
    inline istream&operator>>(int&d){
        d=0;
        for(;!isdigit(*s);++s);
        while(isdigit(*s))
        d=(d<<3)+(d<<1)+(*s++^‘0‘);
        return*this;
    }
}cin;
struct ostream{
    char buf[8000005],*s;
    inline ostream(){s=buf;}
    inline ostream&operator<<(int d){
        if(!d){
            *s++=‘0‘;
        }else{
            static int w;
            for(w=1;w<=d;w*=10);
            for(;w/=10;d%=w)*s++=d/w^‘0‘;
        }
        return*this;
    }
    inline ostream&operator<<(const char&c){*s++=c;return*this;}
    inline void flush(){
        fwrite(buf,1,s-buf,stdout);
        s=buf;
    }
    inline~ostream(){flush();}
}cout;
#else
#include<iostream>
#endif
int pri[170],cct=0,sum[100005][170],num[1005];
void sieve(){
    for(int i=2;i<=1000;++i)num[i]=1;
    for(int i=2;i<=1000;++i)
    if(num[i]){
        pri[num[i]=++cct]=i;
        for(int j=i<<1;j<=1000;j+=i)num[j]=0;
    }
}
using LoveLive=long long;
vector<int>tj;
const int pr[]={2,3,5,24251,61,19260817};
int gcd(int a,int b){
    if(!a||!b)return a|b;
    int t=ctz(a|b);
    a>>=ctz(a);
    do{
        b>>=ctz(b);
        if(a>b)swap(a,b);
        b-=a;
    }while(b);
    return a<<t;
}
inline int power(int a,int b,const int&md){
    int ans=1;
    for(;b;b>>=1){
        if(b&1)ans=(LoveLive)ans*a%md;
        a=(LoveLive)a*a%md;
    }
    return ans;
}
bool miller_rabin(int p){
    if(p==2)return 1;
    LoveLive b=p-1;
    int t=0;
    while(!(b&1))b>>=1,++t;
    for(int i:pr){
        int r=power(i%(p-2)+2,b,p);
        if(r==1||r==p-1)continue;
        bool ok=true;
        for(int j=1;j<=t&&ok;++j){
            r=(LoveLive)r*r%p;
            if(r==p-1)ok=false;
        }
        if(ok)return false;
    }
    return true;
}
void pollard_rho(int&n,int c){
    int k=2,x=rand()%(n-1)+1,y=x,q=1,t=1;
    for(;;k<<=1,y=x,q=1){
        for(int i=1;i<=k;++i){
            x=((LoveLive)x*x%n+c)%n;
            q=(LoveLive)q*abs(x-y)%n;
            if(!(i&63)){
                t=gcd(q,n);
                if(t>1)break;
            }
        }
        if(t>1||(t=gcd(q,n))>1)break;
    }
    n=t;
}
void find(int n,int c){
    if(n==1)return;
    if(miller_rabin(n)){tj.push_back(n);return;}
    int p=n;
    while(p>=n)pollard_rho(p,c--);
    while(n%p==0)n/=p;
    find(n,23333),find(p,23333);
}
#define N 100005
const int md=19260817;
int n,m,a[N],inv[N],cnt[N],tot[N*2],now=1,ans[N];
int p[N][3],s[N][3];
vector<int>lr;
struct que{
    static const int siz=317;
    int l,r,id;
    inline bool operator<(const que&rhs)const{
        return((l/siz!=rhs.l/siz)?(l<rhs.l):r<rhs.r);
    }
}q[N];
inline void add(int id){
    for(register int i=1;i<=cnt[id];++i)
    now=now*1LL*inv[tot[p[id][i]]]%md*(tot[p[id][i]]+s[id][i])%md,tot[p[id][i]]+=s[id][i];
}
inline void del(int id){
    for(register int i=1;i<=cnt[id];++i)
    now=now*1LL*inv[tot[p[id][i]]]%md*(tot[p[id][i]]-s[id][i])%md,tot[p[id][i]]-=s[id][i];
}
int main(){
    srand(19260817);
    sieve();
    inv[1]=1;
    for(int i=2;i<=1e5;++i)inv[i]=(md-md/i)*1LL*inv[md%i]%md;
    cin>>n>>m;
    for(int i=1;i<=n;++i){
        tj.clear();
        cin>>a[i];
        memcpy(sum[i],sum[i-1],sizeof*sum);
        for(int j=1;j<=cct&&pri[j]*pri[j]<=a[i];++j)
        while(!(a[i]%pri[j])){
            ++sum[i][j];
            a[i]/=pri[j];
        }
        if(a[i]>1){
            if(a[i]<=pri[cct]){
                ++sum[i][num[a[i]]];
                continue;
            }
            find(a[i],23333);
            for(int it:tj)
            p[i][++cnt[i]]=it,lr.push_back(it);
            int P=a[i];
            for(int j=1;j<=cnt[i];++j){
                const int&m=p[i][j];
                while(P%m==0){
                    ++s[i][j];
                    P/=m;
                }
            }
        }
    }
    sort(lr.begin(),lr.end());
    lr.erase(unique(lr.begin(),lr.end()),lr.end());
    for(int i=1;i<=n;++i)
    for(int j=1;j<=cnt[i];++j)p[i][j]=lower_bound(lr.begin(),lr.end(),p[i][j])-lr.begin();
    for(int i=1;i<=m;++i)cin>>q[q[i].id=i].l>>q[i].r;
    sort(q+1,q+m+1);
    for(int i=0;i<n*2;++i)tot[i]=1;
    for(int i=1,l=1,r=0;i<=m;++i){
        while(r<q[i].r)add(++r);
        while(l>q[i].l)add(--l);
        while(r>q[i].r)del(r--);
        while(l<q[i].l)del(l++);
        int&out=ans[q[i].id];out=now;
        for(int j=1;j<=cct;++j)
        out=1LL*out*(sum[r][j]-sum[l-1][j]+1)%md;
    }
    for(int i=1;i<=m;++i)
    cout<<ans[i]<<‘
‘;
    return 0;
}

 

  

 

以上是关于[Ynoi2015]此时此刻的光辉的主要内容,如果未能解决你的问题,请参考以下文章

「Ynoi2015」我回来了

[Ynoi2015]我回来了

P5068 [Ynoi2015]我回来了

[Ynoi2015]我回来了

P5072 [Ynoi2015]盼君勿忘

树状数组P5069[Ynoi2015]纵使日薄西山