tensorflow-影子变量值
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tensorflow-影子变量值相关的知识,希望对你有一定的参考价值。
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
import tensorflow as tf
my_var=tf.Variable(0.)
step=tf.Variable(0,trainable=False)
ema=tf.train.ExponentialMovingAverage(0.99,step)
maintain_average_op=ema.apply([my_var])
with tf.Session() as sess:
init_op=tf.global_variables_initializer()
sess.run(init_op)
decay=0.99
#影子变量值变化
for i in range(1,6):
print sess.run([my_var,ema.average(my_var)])
sess.run(my_var.assign_add(i))
sess.run(maintain_average_op)
print sess.run([my_var,ema.average(my_var)])
print "==="
print "----------------"
#num_updates即step变化
sess.run(my_var.assign(5.))
for i in range(1,20,3):
print sess.run([my_var,ema.average(my_var)])
sess.run(step.assign_add(i))
sess.run(maintain_average_op)
print sess.run([my_var,ema.average(my_var)])
print "==="
滑动平均模型
shadow_variable= decay shadow_variable + (1 - decay) variable
Reasonable values for?decay?are close to 1.0, typically in themultiple-nines range: 0.999, 0.9999, etc.
The?apply()?methodadds shadow copies of trained variables and add ops that maintain a movingaverage of the trained variables in their shadow copies. It is used whenbuilding the training model.?
The optional?num_updates?parameter allows one to tweak thedecay rate dynamically. It is typical to pass the count of training steps,usually kept in a variable that is incremented at each step, in which case thedecay rate is lower at the start of training. This makes moving averages movefaster. If passed, the actual decay rate used is:
min(decay, (1 +num_updates) / (10 + num_updates))
以上是关于tensorflow-影子变量值的主要内容,如果未能解决你的问题,请参考以下文章