[PyTorch]PyTorch中模型的参数初始化的几种方法(转)

Posted kk17

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[PyTorch]PyTorch中模型的参数初始化的几种方法(转)相关的知识,希望对你有一定的参考价值。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

转载请注明出处:

http://www.cnblogs.com/darkknightzh/p/8297793.html

参考网址:

http://pytorch.org/docs/0.3.0/nn.html?highlight=kaiming#torch.nn.init.kaiming_normal

https://github.com/prlz77/ResNeXt.pytorch/blob/master/models/model.py

https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua

https://github.com/bamos/densenet.pytorch/blob/master/densenet.py

https://github.com/szagoruyko/wide-residual-networks/blob/master/models/utils.lua

说明:暂时就这么多吧,错误之处请见谅。前两个初始化的方法见pytorch官方文档

1. xavier初始化

torch.nn.init.xavier_uniform(tensor, gain=1)

对于输入的tensor或者变量,通过论文Understanding the difficulty of training deep feedforward neural networks” - Glorot, X. & Bengio, Y. (2010)的方法初始化数据。初始化服从均匀分布,其中,该初始化方法也称Glorot initialisation。

参数:

      tensor:n维的 torch.Tensor 或者 autograd.Variable类型的数据

      a:可选择的缩放参数

例如:

w = torch.Tensor(3, 5)
nn.init.xavier_uniform(w, gain=nn.init.calculate_gain(relu))

torch.nn.init.xavier_normal(tensor, gain=1)

对于输入的tensor或者变量,通过论文Understanding the difficulty of training deep feedforward neural networks” - Glorot, X. & Bengio, Y. (2010)的方法初始化数据。初始化服从高斯分布,其中,该初始化方法也称Glorot initialisation。

参数:

      tensor:n维的 torch.Tensor 或者 autograd.Variable类型的数据

      a:可选择的缩放参数

例如:

w = torch.Tensor(3, 5)
nn.init.xavier_normal(w)

2. kaiming初始化

torch.nn.init.kaiming_uniform(tensor, a=0, mode=‘fan_in‘)

对于输入的tensor或者变量,通过论文“Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification” - He, K. et al. (2015)的方法初始化数据。初始化服从均匀分布,其中,该初始化方法也称He initialisation。

参数:

      tensor:n维的 torch.Tensor 或者 autograd.Variable类型的数据

      a:该层后面一层的激活函数中负的斜率(默认为ReLU,此时a=0)

      mode:‘fan_in’ (default) 或者 ‘fan_out’. 使用fan_in保持weights的方差在前向传播中不变;使用fan_out保持weights的方差在反向传播中不变。

例如:

w = torch.Tensor(3, 5)
nn.init.kaiming_uniform(w, mode=fan_in)

torch.nn.init.kaiming_normal(tensor, a=0, mode=‘fan_in‘)

对于输入的tensor或者变量,通过论文“Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification” - He, K. et al. (2015)的方法初始化数据。初始化服从高斯分布,其中,该初始化方法也称He initialisation。

参数:

      tensor:n维的 torch.Tensor 或者 autograd.Variable类型的数据

      a:该层后面一层的激活函数中负的斜率(默认为ReLU,此时a=0)

      mode:‘fan_in’ (default) 或者 ‘fan_out’. 使用fan_in保持weights的方差在前向传播中不变;使用fan_out保持weights的方差在反向传播中不变。

例如:

w = torch.Tensor(3, 5)
nn.init.kaiming_normal(w, mode=fan_out)

使用的例子(具体参见原始网址):

https://github.com/prlz77/ResNeXt.pytorch/blob/master/models/model.py

技术分享图片
from torch.nn import init
self.classifier = nn.Linear(self.stages[3], nlabels)
init.kaiming_normal(self.classifier.weight)
for key in self.state_dict():
    if key.split(.)[-1] == weight:
        if conv in key:
            init.kaiming_normal(self.state_dict()[key], mode=fan_out)
        if bn in key:
            self.state_dict()[key][...] = 1
    elif key.split(.)[-1] == bias:
        self.state_dict()[key][...] = 0
技术分享图片

3. 实际使用中看到的初始化

3.1 ResNeXt,densenet中初始化

https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua

https://github.com/bamos/densenet.pytorch/blob/master/densenet.py

conv

n = kW* kH*nOutputPlane
weight:normal(0,math.sqrt(2/n))
bias:zero()

batchnorm

weight:fill(1)
bias:zero()

linear

bias:zero()

3.2 wide-residual-networks中初始化(MSRinit

https://github.com/szagoruyko/wide-residual-networks/blob/master/models/utils.lua

conv

n = kW* kH*nInputPlane
weight:normal(0,math.sqrt(2/n))
bias:zero()

linear

bias:zero()

 

以上是关于[PyTorch]PyTorch中模型的参数初始化的几种方法(转)的主要内容,如果未能解决你的问题,请参考以下文章

pytorch对模型参数初始化

从头学pytorch:模型参数访问/初始化/共享

pytorch 参数初始化

PyTorch 迁移学习 (Transfer Learning) 代码详解

PyTorch 迁移学习 (Transfer Learning) 代码详解

Pytorch不同层设置不同学习率