cfE. Ehab and a component choosing problem(贪心)
Posted zwfymqz
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了cfE. Ehab and a component choosing problem(贪心)相关的知识,希望对你有一定的参考价值。
题意
给出一棵树,每个节点有权值,选出(k)个联通块,最大化
[frac{sum_{i in S} a_i}{k}]
Sol
结论:选出的(k)个联通块的大小是一样的且都等于最大联通块的大小
证明:因为我们是在保证分数最大的情况下才去最大化(k),一个很经典的结论是单独选择一个权值最大的联通块得到的分数一定是最大的,然后我们这时我们才去考虑最大化(k)
那么思路就很清晰了,先一遍dfs dp出最大联通块,然后再一遍dfs从下往上删就行了
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int MAXN = 3e5 + 10, INF = 1e18;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, a[MAXN], mx[MAXN], ans = -INF, num;
#define siz(v) ((int)v.size())
vector<int> v[MAXN];
void dfs(int x, int fa) {
mx[x] = a[x];
for(int i = 0; i < siz(v[x]); i++) {
int to = v[x][i];
if(to == fa) continue;
dfs(to, x);
mx[x] = max(mx[x], mx[x] + mx[to]);
}
ans = max(ans, mx[x]);
}
void dfs2(int x, int fa) {
mx[x] = a[x];
for(int i = 0; i < siz(v[x]); i++) {
int to = v[x][i];
if(to == fa) continue;
dfs2(to, x);
mx[x] = max(mx[x], mx[x] + mx[to]);
}
if(mx[x] == ans) num++, mx[x] = 0;
}
signed main() {
#ifndef ONLINE_JUDGE
//freopen("a.in", "r", stdin);freopen("a.out", "w", stdout);
#endif
N = read();
for(int i = 1; i <= N; i++) a[i] = read();
for(int i = 1; i <= N - 1; i++) {
int x = read(), y = read();
v[x].push_back(y); v[y].push_back(x);
}
dfs(1, 0);
//printf("%I64d
", ans);
memset(mx, 0, sizeof(mx));
dfs2(1, 0);
cout << ans * num << " " << num;
return 0;
}
以上是关于cfE. Ehab and a component choosing problem(贪心)的主要内容,如果未能解决你的问题,请参考以下文章
Codeforces Round #525 E - Ehab and a component choosing problem
Codeforces 862B - Mahmoud and Ehab and the bipartiteness
CF1088C Ehab and a 2-operation task 构造
CodeForces 862E Mahmoud and Ehab and the function 暴力,二分