tensorflow-tf.nn.softmax,tf.nn.sparse_softmax_cr

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tensorflow-tf.nn.softmax,tf.nn.sparse_softmax_cr相关的知识,希望对你有一定的参考价值。

#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Tue Oct  2 08:43:02 2018

@author: myhaspl
@email:[email protected]
tf.nn.softmax
tf.nn.sparse_softmax_cross_entropy_with_logits
tf.nn.softmax_cross_entropy_with_logits
"""
import tensorflow as tf

g=tf.Graph()

with g.as_default():
    x1=tf.constant([0.4,0.2,0.9,0.81])
    x2=tf.constant([0.6,0.3,0.7,0.6])
    x3=tf.constant([0.7,0.4,0.8,0.95])
    y1=[tf.nn.softmax(x1)]
    y2=tf.nn.softmax(x2)
    y3=tf.nn.softmax(x3)
    y=tf.stack([y2,y3])

    labels1 = [0,2]
    logits1 = [2,0.5]

    labels2 = [1,3]
    logits2 = [[2,0.5,6,2,1],[1.8,0.3,2,0.1,0.5]]

    result1 = tf.nn.softmax_cross_entropy_with_logits(labels=labels1, logits=logits1)
    result2 = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels2, logits=logits2)

with tf.Session(graph=g) as sess:
    print sess.run(result1)
    print sess.run(result2)
3.4028268
[5.5463643 2.7646239]

tf.nn.sparse_softmax_cross_entropy_with_logits表示一个样本只能属于一类,具有排他性。但要注意,labels是稀疏表示的,是 [0,num_classes]中的一个数值,因此,labels的每个元素是标量标签值,对应着logits中的向量输出值。
tf.nn.softmax_cross_entropy_with_logits表示一个样本可以属于多类,不具排他性。labels和logits为正常的单个或多个向量标签值与输出值。

以上是关于tensorflow-tf.nn.softmax,tf.nn.sparse_softmax_cr的主要内容,如果未能解决你的问题,请参考以下文章