[bzoj4407] 于神之怒加强版

Posted hbyer

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[bzoj4407] 于神之怒加强版相关的知识,希望对你有一定的参考价值。

Description

给出N,M,K.求

技术分享图片

Input

输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示。

Output

如题

Sample Input

1 2
3 3 

Sample Output

20

HINT

1<=N,M,K<=5000000,1<=T<=2000

莫比乌斯反演,推下式子:
[ egin{align} ans&=sum _{d=1}^{min(n,m)}d^k sum _{i=1}^{lfloorfrac{n}{d} floor} sum _{j=1}^{lfloorfrac{m}{d} floor} [gcd(i,j)=1]&=sum _{d=1}^{min(n,m)}d^k sum _{i=1}^{lfloorfrac{n}{d} floor} sum _{j=1}^{lfloorfrac{m}{d} floor} sum _{d^prime|i&d^prime|j} mu(d^prime)&=sum _{d=1}^{min(n,m)}d^k sum _{d^prime} mu(d^prime)lfloorfrac{n}{dd^prime} floor lfloorfrac{m}{dd^prime} floor &=sum _{d=1}^{min(n,m)}d^k sum _{d|T} mu(frac{T}{d})lfloorfrac{n}{T} floor lfloorfrac{m}{T} floor &=sum _{T} lfloorfrac{n}{T} floor lfloorfrac{m}{T} floor sum _{d|T}d^k mu(frac{T}{d})\end {align} ]
(f)为:
[ f(n)=sum_{d|T}d^kmu(frac{T}{d}) ]
然后我们可以线筛出(mu)然后大力算(f)然后数论分块,由于调和级数,复杂度为(O(nlog(n)+qsqrt{n}))

然而交一发T掉了,,,可以考虑线筛出(f),考虑质数(p),对于(f(n*p)),展开得:
[ f(n*p)=sum_{d|T}d^kmu(frac{T*p}{d})+sum_{d|T}(d*p)^kmu(frac{T}{d}) ]
然后若(p|n),可得(f(n*p)=f(n)*p^k),否则可得(f(n*p)=f(n)*(p^k-1))

然后线筛即可,复杂度(O(n+qsqrt{n}))

暴力算(f)的代码(TLE):

#include<bits/stdc++.h>
using namespace std;

#define int long long 

void read(int &x) {
    x=0;int f=1;char ch=getchar();
    for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
    for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}

void print(int x) {
    if(x<0) putchar('-'),x=-x;
    if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('
');}

const int maxn = 5e6+1;
const int mod = 1e9+7;

int pri[maxn],vis[maxn],mu[maxn],f[maxn],tot,n,m,k;

int qpow(int a,int x) {
    int res=1;
    for(;x;x>>=1,a=a*a%mod) if(x&1) res=res*a%mod;
    return res;
}

void sieve() {
    mu[1]=1;
    for(int i=2;i<=n;i++) {
        if(!vis[i]) pri[++tot]=i,mu[i]=-1;
        for(int j=1;j<=tot&&i*pri[j]<=n;j++) {
            vis[i*pri[j]]=1;
            if(!(i%pri[j])) {mu[i*pri[j]]=0;break;}
            mu[i*pri[j]]=-mu[i];
        }
    }
    for(int d=1;d<=n;d++) {
        int res=qpow(d,k);
        for(int i=1;i*d<=n;i++) (f[i*d]+=res*mu[i])%=mod;
    }
    for(int i=1;i<=n;i++) f[i]=(f[i]+f[i-1])%mod;
}

signed main() {
    int t;n=maxn-1;read(t),read(k);sieve();
    while(t--) {
        read(n),read(m);
        int T=1,ans=0;
        while(T<=n&&T<=m) {
            int pre=T;T=min(n/(n/T),m/(m/T));
            ans=(ans+(n/T)*(m/T)%mod*(f[T]-f[pre-1])%mod)%mod;
            T++;
        }
        write((ans%mod+mod)%mod);
    }
    return 0;
}

线筛(f)

#include<bits/stdc++.h>
using namespace std;

#define int long long 

void read(int &x) {
    x=0;int f=1;char ch=getchar();
    for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
    for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}

void print(int x) {
    if(x<0) putchar('-'),x=-x;
    if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('
');}

const int maxn = 5e6+1;
const int mod = 1e9+7;

int pri[maxn],vis[maxn],mu[maxn],f[maxn],tot,n,m,k,p[maxn];

int qpow(int a,int x) {
    int res=1;
    for(;x;x>>=1,a=a*a%mod) if(x&1) res=res*a%mod;
    return res;
}

void sieve() {
    f[1]=1;
    for(int i=2;i<=n;i++) {
        if(!vis[i]) pri[++tot]=i,p[tot]=qpow(i,k),f[i]=p[tot]-1;
        for(int j=1;j<=tot&&i*pri[j]<=n;j++) {
            vis[i*pri[j]]=1;
            if(!(i%pri[j])) {f[i*pri[j]]=f[i]*p[j]%mod;break;}
            f[i*pri[j]]=f[i]*(p[j]-1)%mod;
        }
    }for(int i=1;i<=n;i++) f[i]=(f[i]+f[i-1])%mod;
}

signed main() {
    int t;n=maxn-1;read(t),read(k);
    //int PRE=clock();
    sieve();
    //cerr << (double) (clock()-PRE)/CLOCKS_PER_SEC << endl;
    while(t--) {
        read(n),read(m);
        int T=1,ans=0;
        while(T<=n&&T<=m) {
            int pre=T;T=min(n/(n/T),m/(m/T));
            ans=(ans+(n/T)*(m/T)%mod*(f[T]-f[pre-1])%mod)%mod;
            T++;
        }
        write((ans%mod+mod)%mod);
    }
    return 0;
}

注意下bzoj不能用clock函数,否则狂RE不止,别问我怎么知道的QAQ

以上是关于[bzoj4407] 于神之怒加强版的主要内容,如果未能解决你的问题,请参考以下文章

BZOJ 4407 于神之怒加强版

BZOJ 4407 于神之怒加强版

bzoj 4407 于神之怒加强版 (反演+线性筛)

BZOJ4407于神之怒加强版(莫比乌斯反演)

bzoj 4407 于神之怒加强版

bzoj:4407: 于神之怒加强版