sklearn-特征工程之特征选择
Posted stream886
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了sklearn-特征工程之特征选择相关的知识,希望对你有一定的参考价值。
title: sklearn-特征工程之特征选择
date: 2016-11-25 22:49:24
categories: skearn
tags: sklearn
---
抄袭/参考资料
- 使用sklearn做单机特征工程
- sckearn中文
- 周志华《机器学习》
当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。通常来说,从两个方面考虑来选择特征:
- 特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上没有差异,这个特征对于样本的区分并没有什么用。
- 特征与目标的相关性:这点比较显见,与目标相关性高的特征,应当优选选择。除方差法外,本文介绍的其他方法均从相关性考虑。
根据特征选择的形式又可以将特征选择方法分为3种:
- Filter:过滤法,按照发散性或者相关性对各个特征进行评分,设定阈值或者待选择阈值的个数,选择特征。
- Wrapper:包装法,根据目标函数(通常是预测效果评分),每次选择若干特征,或者排除若干特征。
- Embedded:嵌入法,先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据系数从大到小选择特征。类似于Filter方法,但是是通过训练来确定特征的优劣。
我们使用sklearn中的feature_selection
库来进行特征选择。
Filter:过滤法
方差选择法
VarianceThreshold
是特征选择中的一项基本方法。它会移除所有方差不满足阈值的特征。默认设置下,它将移除所有方差为0的特征,即那些在所有样本中数值完全相同的特征。
from sklearn.feature_selection import VarianceThreshold
# 设置方差阈值为100
sel = VarianceThreshold(threshold=100)
sel.fit_transform(X)
单变量特征选择
单变量特征选择基于单变量的统计测试来选择最佳特征。它可以看作预测模型的一项预处理。Scikit-learn将特征选择程序用包含transform 函数的对象来展现:
SelectKBest
移除得分前 (k) 名以外的所有特征SelectPercentile
移除得分在用户指定百分比以后的特征- 对每个特征使用通用的单变量统计测试: 假正率(false positive rate)
SelectFpr
, 伪发现率(false discovery rate)SelectFdr
, 或族系误差率SelectFwe
. GenericUnivariateSelect
可以设置不同的策略来进行单变量特征选择。同时不同的选择策略也能够使用超参数寻优,从而让我们找到最佳的单变量特征选择策略。
这些作为打分函数输入的对象(同样位于feature_selection
模块中),返回单变量的概率值:
- 用于回归:
f_regression
- 用于分类:
chi2
(卡方)orf_classif
相关系数法
卡方检验
互信息法
Wrapper:包装法
递归特征消除法
递归消除特征法使用一个基模型来进行多轮训练,每轮训练后,消除若干权值系数的特征,再基于新的特征集进行下一轮训练。
Embedded:嵌入法 / 基于模型进行特征选择
基于惩罚项的特征选择法
class sklearn.feature_selection.SelectFromModel(estimator,
threshold=None,
prefit=False)
使用L1范数作为惩罚项的:ref:Linear models会得到稀疏解:大部分特征对应的系数为0。当你希望减少特征的维度以用于其它分类器时,可以通过 feature_selection.SelectFromModel
来选择不为0的系数。特别指出,常用于此目的的稀疏预测模型有:
- 回归:
linear_model.Lasso
- 对于Lasso,参数(alpha)越大,被选中的特征越少 。
- 分类:
linear_model.LogisticRegression
和svm.LinearSVC
- 对于SVM和逻辑回归,参数(C)控制稀疏性:(C)越小,被选中的特征越少。
from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import Lasso
lr = Lasso(alpha=10)
lr.fit(X,y)
#带L1惩罚项的逻辑回归作为基模型的特征选择
model = SelectFromModel(lr, prefit=True)
model.transform(X)
基于树模型的特征选择法
基于树的预测模型(见 sklearn.tree
模块,森林见 sklearn.ensemble
模块)能够用来计算特征的重要程度,因此能用来去除不相关的特征(结合 sklearn.feature_selection.SelectFromModel
)
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import GradientBoostingRegressor
gbdt = GradientBoostingRegressor()
gbdt.fit(X,y)
#GBDT作为基模型的特征选择
model = SelectFromModel(gbdt, prefit=True)
model.transform(X)
以上是关于sklearn-特征工程之特征选择的主要内容,如果未能解决你的问题,请参考以下文章
机器学习实战基础(十七):sklearn中的数据预处理和特征工程特征选择 之 Embedded嵌入法
机器学习实战基础(十八):sklearn中的数据预处理和特征工程特征选择 之 Wrapper包装法
机器学习实战基础(十五):sklearn中的数据预处理和特征工程特征选择 之 Filter过滤法 相关性过滤
机器学习实战基础(十五):sklearn中的数据预处理和特征工程特征选择 之 Filter过滤法 相关性过滤